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ABSTRACT 

Advancements in high-performance computing and in nonlinear dynamic structural 
simulation have made it possible to virtually test potential designs prior to building and testing 
expensive prototypes. These tools alone, however, still require an engineer to develop a design 
based on intuition and numerous time-consuming and error-prone iterations. The next level of 
advancement is software to automate the process of iterating over a large number of design 
scenarios and intelligently seek optimal values for those parameters that strongly affect product 
performance and cost. While many design optimization approaches are limited to a small number 
of continuous design variables, the approach described here leads to a productive search over 
hundreds of variables at a time. This capability has been implemented in a software product called 
HEEDS (Hierarchical Evolutionary Engineering Design System). HEEDS uses multiple 
autonomous agents to hierarchically decompose a problem into subsets with highly decomposed 
overlapped relationships. Decomposition is effected by using different numbers of design 
variables, different levels of design variable discretization, and/or other problem-specific divide-
and-conquer rules. The system combines evolutionary search algorithms with local optimization 
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techniques. Using ABAQUS/Explicit and LS-DYNA as the finite element solver within the 
HEEDS optimization environment, this process has been applied to several automotive rail 
designs, resulting in significant gains in performance along with up to 20% reductions in mass 
compared to baseline rails designed by experienced engineers. Two example applications of this 
method are described herein. 
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INTRODUCTION 
The design of modern vehicle structures is driven by many competing criteria, such as 

improved safety and fuel efficiency, lower cost, enhanced performance, and increased style 
flexibility. In addition, the introduction of new manufacturing processes and materials 
significantly increases the available design space, or the set of all possible designs for a problem. 
In order to explore this large design space more effectively while trying to reduce design cycle 
times, engineers can now take advantage of automated design optimization and simulation 
software tools. These tools can greatly decrease the time required to identify a set of feasible, or 
even near-optimal, designs prior to building and testing the first prototype. Moreover, these tools 
also overcome the limitations of human intuition and allow the designers freedom to seek creative 
solutions that are not obvious to even the most experienced engineer. This is true in general but 
particularly true with shape optimization problems, which can involve potentially hundreds of 
design variables.  

 
Optimizing multifunctional, energy-absorbing structures in a vehicle provides a challenge to 

safety engineers and to automated design techniques. For example, energy-absorbing structures 
should maintain their rigidity while carrying the anticipated in-service loads and while serving as 
primary mounting locations for numerous functional devices and attachments, such as the engine 
in an automobile or a passenger seat in a helicopter. Yet these same structures must collapse in a 
prescribed manner during a crash to maximize the amount of energy absorbed by the structure and 
to limit the forces transmitted to passengers. 

 
Energy-absorbing structures often take the form of thin-walled tubular metallic structures 

subjected to dynamic compressive loads. In this case, energy is absorbed primarily through plastic 
deformation of the material and friction due to surface contact. The ideal mode of failure is one of 
progressive short-column buckling, which maximizes plastic material deformation and folding 
contact. The design of energy-absorbing tubular structures must ensure that their collapse or 
buckling mode is not sensitive to expected variations in material properties, wall section thickness, 
cross-sectional shapes, or overall tube curvature. The structure should also be robust enough to 
absorb similar amounts of energy under a wide variety of off-axis dynamic loading scenarios. 

 
Crashworthiness problems are characterized by a very complex design space with many peaks 

and valleys due to their highly dynamic nature. These classes of structural design problems have a 
very multi-modal, non-convex design space and do not lend themselves well to classical gradient 
techniques.  Moreover, objectives and constraints related to crash energy management, stiffness, 
strength, and packaging are joined by additional requirements on manufacturability, noise and 
vibration, mass reduction, and robustness against process and material variation. These objectives 
compete strongly against one another, making this a very challenging multi-objective optimization 
problem. Finally, the structure should be somewhat insensitive to slight variations in design 
variables. For example, in problems involving stability or buckling, behavior can be very sensitive 
to geometrical and material imperfections, which may prevent a part from failing in the way that it 
was intended. Therefore, it is not sufficient to find a design that performs well under a set of 
narrowly defined objectives, constraints, and loading conditions. 
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OPTIMIZATION STRATEGY 
Many optimization studies and even mathematical proofs have shown that no single 

optimization approach performs best on all classes of problems, while combining a set of global 
and local optimization techniques often yields improved results. This often creates significant 
confusion and can be misleading for the optimization newcomer. In addition, for problems that 
contain many design variables and criteria, it is sometimes necessary to decompose the overall 
problem into a set of smaller, more tractable problems to obtain improved results with reasonable 
computational resources. This capability has been implemented in a software package called 
HEEDS (Hierarchical Evolutionary Engineering Design System). HEEDS has been constructed to 
allow hierarchical decomposition of problems while automatically combining the strengths of 
global exploration and local optimization algorithms. It combines the strengths of genetic 
algorithms (Holland, 1975), simulated annealing (Ruthenbar, 1989), sequential quadratic 
programming (Schittkowski, 1985), design of experiments (Cochran et al., 1992), and response 
surface methodology (Khuri et al., 1996), which jointly allow it to efficiently solve a wide class of 
problems. 

 
HEEDS employs adaptive autonomous agents that communicate but work semi-

independently on a common problem. Each agent uses one or more search methods to intelligently 
scan a part (or all) of the design space in search of optimal solutions. Using this methodology, the 
overall problem can be hierarchically decomposed so as to provide most agents with different, 
smaller representations of the problem. A set of design variables at a given level of discretization 
constitutes one representation of the problem. Each agent (or a group of agents) can use a different 
representation of the problem to increase the efficiency of the design search. Furthermore, each 
agent (or group of agents) can employ specialized search heuristics that seek to maximize the 
performance of its representation of the problem. This approach combines the evolutionary search 
methods with the traditional local search methods to increase the effectiveness of the search 
process for a broad class of problems. Using this approach, agents can search for good designs in 
different representations of the design space and/or using different sets of constraints and 
objectives, communicating with each other to identify more globally optimal designs through 
structured sharing of information. The hierarchical decomposition allows a complex problem to be 
discretized into a set of highly decomposed, overlapping relationships, which have a reduced 
design space that is relatively easy to search. The agents seeking good designs for these smaller 
problems provide information to the agents searching the complete design space with all the 
objectives and constraints, resulting in an economically efficient search process. This approach 
significantly reduces the total number of design iterations required for finding excellent solutions, 
and allows efficient handling of very complex optimization problems, which would otherwise be 
impractical to solve. 

 
By using a stochastic strategy during the search for an optimal design, HEEDS is able to 

account for slight variations in design variables, thus insuring robustness and reliability. This 
results in designs that are tolerant of slight changes in the design parameters without suffering 
drastic drops in performance of the designs. 
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SHAPE OPTIMIZATION OF A HYDROFORMED LOWER COMPARTMENT RAIL 
 
 

Problem Definition 
A hydroformed lower compartment rail was designed for the offset load-case using HEEDS 

as the optimization software and ABAQUS/Explicit to evaluate each potential design created by 
HEEDS. The objective of the optimization problem was to maximize the crush-zone energy in the 
front of the rail (the crush zone shown in Fig. 1) for the offset crash scenario with inequality 
constraints on the peak rigid wall force and mass.  
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 Figure 1. Geometry of Baseline Rail with Control Cross-Section Positions. 
 
 

Problem Setup 
An analysis model of the rail was developed for the offset crash scenario to serve as a 

template for the creation of potential designs. For this analysis, a lumped mass equal to 
approximately one-half the mass of the vehicle was placed at the rear of the rail and offset 60 mm 
in the negative Y direction from the rail axis to simulate the offset crash scenario (see Fig. 1). The 
rail structure and mass were given an initial velocity and crushed into a rigid stationary wall. The 
crush-zone energy, peak rigid wall force, and mass were computed with ABAQUS/Explicit. 
HEEDS was then used to automate the creation and evaluation of each potential design to perform 
design optimization. Two different runs of the same problem were performed to demonstrate the 
increase in the efficiency of the search process using hierarchical decomposition.  

 
The first run was performed using a single agent that searched in a design space based on 67 

design variables (66 control point shape variables and 1 thickness variable). Evolutionary search 
methods in combination with local search techniques were used to intelligently explore the design 
space. The agent sought to maximize the internal energy absorbed in the front region of the rail 
during the first 14 milliseconds of the crush. Inequality constraints were imposed on the total mass 
of the rail and on the maximum normal force on the rigid wall. 

 
Figure 1 shows the basic geometry of the rail, as well as the location of the 11 control cross-

sections located along the length of the rail. The arrows on the cross-section indicate the directions 
in which the control points (controlling b-splines) were offset to create new shapes during the 
optimization process. All cross-sections had the same initial rectangular geometry, but were 
independently varied to create new rail shapes. The main design variables were the control points 
on the cross-sections along the length of the rail and, due to symmetry conditions that were built 
in, each cross-section only contained 6 control points. The rail was created using a ruled surface 
and automatic mesh generator within HEEDS. Since a new mesh was created every time the rail 
shape was changed, the problems of mesh distortion were minimized. 
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A second run was conducted using hierarchical decomposition as depicted in the topological 
structure shown in Fig 2. A total of three autonomous agents were used for this second run. 
Designs were shared periodically in a structured manner from agent-to-agent according to the 
arrows in Fig. 2. Agent 0 shared designs with Agent 1, and Agent 1 shared designs with Agent 2. 
Each agent was executed as a separate computer process on a loosely coupled network of personal 
computers. The agents independently sought sets of good designs for each single technical 
objective and constraint set, using design variables at different levels of resolution. The designs 
from the agents working at coarser levels were fed into the agents working on a more refined 
search space to expedite the search process in those agents. This allowed for economical 
emergence of solutions at a more refined level of discretization that satisfy all constraints and are 
driven by all technical objectives.  
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Figure 2. Topological Structure Used for the 3-Agent Run.  
 
 
All three agents searched within a design space composed of 67 design variables. However, 

the level of discretization of the design variables differed for each agent. Agent 0 had the smallest 
number of possible values that each design variable could be assigned, and therefore had a coarse 
representation of the problem. In the other extreme, Agent 2 had the most refined representation 
because the design variables had the largest number of possible values. 

 
The problem was further decomposed by considering different periods of crush time for each 

agent (6 ms for agent 0, 10ms for agent 1and 14 ms for agent 2). Due to this topology setup, Agent 
0 quickly (due to smaller crush time as well as a coarser design space) determined good designs 
within its coarse design space. The designs found in agent 0 had good crush initiators near the 
front of the rail and were resistant to buckling in the rear of the rail. Agent 0 then shared the 
information from its search process with Agent 1 (which is simultaneously searching for designs 
in a more refined design space), pointing it to the regions in the design space with potential for 
good designs. This results in a significant speedup of the search process as compared to the agent 
searching only at the highest level of the problem representation.  

 
Though not employed in the current example, many other techniques exist to decompose 

design problems within HEEDS. For example, HEEDS also allows the number of design variables 
to be different in each agent, often a very effective method of problem decomposition. 
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Discussion of Results 
Many high-performance designs were found during the runs, since HEEDS evolved a set of 

designs over a number of cycles. Figure 3 depicts the undeformed geometry of the best overall 
design found by HEEDS for the offset load case. The design crushes progressively in an 
“accordion” fashion, primarily due to the structure’s shape. These progressive short-column 
buckling modes of crush are inherently robust against off-axis dynamic load cases. Energy is 
absorbed primarily through plastic deformation of the material during the progressive 
deformation. These accordion-like deformation modes help to maximize the plastic material 
deformation and folding contact during crash scenarios.  

 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Geometric Shape of Best Rail Design Found.  
 

 
Figure 4 shows the variation of the objective with respect to the number of design evaluations 

performed during the search process. The results of the search from the single agent run are 
compared with the results from the multi-agent run (using decomposition). The results of the 
three-agent run are plotted for the agent searching over the same design space as the single agent. 
Figure 4 illustrates the savings in terms of the number of evaluations required to find good designs 
when hierarchical decomposition is used in a problem. In the multi-agent run, searching at low 
levels of resolution identifies high-performance solutions very quickly. These solutions are then 
injected into agents searching at higher resolution for solution refinement. On the other hand, in 
the single agent run the agent has to search the entire design space alone, and thus requires a 
greater number of iterations to identify good designs. Both design runs were executed for the same 
number of cycles and appear to have converged. The multi-agent run found solutions that 
absorbed significantly more energy than did the best solution found by the single agent run. This 
illustrates the ability of a multi-agent approach to search the design space more broadly, 
continuously identifying fruitful regions for search. 
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 Figure 4. Trajectory of internal energy. 

 
 

SHAPE OPTIMIZATION OF A WELDED VEHICLE FRONT RAIL 
 
 

Problem Definition 
A welded vehicle front rail was designed using HEEDS as the optimization software and LS-

DYNA Explicit as the finite element solver. The rail consists of two open “L” shaped surfaces that 
are welded together to create a closed surface. HEEDS found the cross-sectional shape, material, 
and spot-weld placement in order to maximize the amount of crush-zone energy in the front of the 
rail for both direct and offset crash scenarios with inequality constraints on the peak rigid wall 
force and mass.  

 
Problem Setup 

An analysis model of the vehicle front rail was developed to serve as a template for the 
creation of potential designs. A lumped mass was placed at various offset positions at the rear of 
the rail structure to allow emulation of multiple crash scenarios, see Fig. 5. The rail structure and 
mass were given an initial velocity and crushed into a rigid stationary wall. The crush-zone 
energy, peak rigid wall force, and mass of the rail were computed with LS-DYNA. 

 
To improve upon this initial design, different parameters affecting the performance of the rail 

were allowed to vary. The thickness, Young’s moduli, and yield strength of each of the two “L” 
shaped open surfaces represent six of the design variables. Twelve possible spot weld locations 
were identified, along with sixty variables that affect the shape of the rail. These sixty shape 
variables are depicted in Fig. 6, which shows ten control points affecting the cross-sectional shape 
(for the coarse representation) at six different cross sections along the length of the rail. The 
design space therefore contains 72 variables and is further complicated by the need to treat the 
variables and load cases in a stochastic manner. 

 
In order to more efficiently search the design space for an optimal design, the problem was 

hierarchically decomposed such that nine search agents could independently seek a set of good 
designs for each single technical objective and constraint set while working with a small number 
of design variables. These sub-optimal solutions were shared such that global solutions were 
found from the complete design space. Figure 7 depicts this topological structure. Each agent was 
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executed on a separate computer process on a loosely coupled network of personal computers (550 
MHz). Designs were shared periodically in a structured manner from agent-to-agent according to 
the arrows in Fig. 7. 
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Figure 5. Geometry of Baseline Rail with Offset Mass Positions. 
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Figure 7. Topological Structure Used for the 9-Agent Run.  

 
 

The difference between the refined and coarse representations of the problem lies in the 
number of design variables used to depict the cross-sectional shape along the length of the rail. 
While the refined representation of the problem allows each of the cross-sectional control points to 
vary independently, the coarse representation groups the control points using master-slave 
conditions such that only four design variables control the shape of the cross-section. Figure 6 
shows the master-slave groupings used for the both the coarse and refined representations. 

 
Although each of the nine agents seek to maximize the amount of crush-zone energy in the 

front of the rail for crash scenarios with inequality constraints on both the peak rigid wall force 
and the mass, Agents 0 through 2 only consider a small period of crush time (6 ms) while agent 4 
through 9 consider a larger period of time (12 ms). The agents are grouped such that agents 0, 3, 
and 6 only consider the direct load case crash scenario (lumped mass is placed directly behind the 
rail) with deterministic design variables. Agents 2, 5, and 8 only consider the offset load case 
crash scenario (lumped mass is placed behind the rail at an offset) with deterministic design 
variables. Agents 1, 4, and 7 consider each load case as a stochastic variable and allow each 
design variable to behave in a stochastic manner. In essence, this topology’s agents seek to 
maximize the performance of the rail structure while avoiding designs that are sensitive to 
variation of the design variables and load cases. 

 
Discussion of Results 

Many high-performance designs were found during the run since HEEDS evolves a set of 
designs over a period of cycles. For both the direct and offset load cases, the design crushes 
progressively in an “accordion” fashion from the front to the rear of the structure primarily due to 
the structure’s shape. These progressive short-column buckling modes of crush are inherently 
robust against off-axis dynamic load cases. Energy is absorbed primarily through plastic 
deformation of the material and friction due to surface contact through the progressive accordion-
like deformation. These accordion-like deformation modes help to maximize the plastic material 
deformation and folding contact during off-axis and direct axis crash scenarios. 
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Summary 
HEEDS was applied to two crashworthiness problems using various search agents to evaluate 

potential designs with different design variable representations and performance measures. Each 
successive design variable representation increased the total number of design variables of the 
overall problem, while each performance measure used a subset of the technical objectives and 
constraints.  

 
For these examples, HEEDS used search agents that independently sought a set of good 

designs for each single technical objective and constraint set with a small number of coarse design 
variables, while aggregating sets of sub-optimal solutions for all performance measures, allowing 
economical emergence of solutions with a larger number of design variables that satisfy all 
constraints and are driven by all technical objectives. In addition, stochasticity of the loads and 
design variables was taken into account so that the structure would be somewhat insensitive to 
these variations. 
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