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Abstract.  A thorough study was conducted to benchmark the performance of several algorithms for 
multi-objective Pareto optimization. In particular, the hybrid adaptive method MO-SHERPA was 
compared to the NCGA and NSGA-II methods. These algorithms were tested on a set of standard 
benchmark problems, the so-called ZDT functions. Each of these functions has a different set of features 
representative of a different class of multi-objective optimization problem. It was concluded that the 
MOSHERPA algorithm is significantly more efficient and robust for these problems than the other 
methods in the study. 

1. Introduction 

Conventional parameter optimization methods seek 
to find a single optimized solution based on a 
weighted sum of all objectives. If all objectives get 
better or worse together, this conventional 
approach can effectively find the optimal solution. 
However, if the objectives conflict (as, for example, 
increasing performance and reducing cost typically 
do), then there is not a single optimal solution. In 
this case, a multi-objective optimization study should 
be performed that provides multiple solutions 
representing the tradeoffs among the objectives, 
denoted fi (see Figure 1). This is commonly called 
Pareto optimization.  

It is then up to the designer/engineer to select 
among these designs, with a better understanding of 
the true tradeoffs. The inset box contains a 
mathematical definition of the class of optimization 
problems being addressed here, which allows the 
possible inclusion of equality and/or inequality 
constraints. 

1.1 Non-Dominated Sorting in Multi-Objective 
Optimization  

A common technique for ranking designs in a multi-
objective optimization study is to use the concept of 
non-dominated sorting, as developed by Deb [1-3].  

 

 

 

 

 

 

 

Multi-objective Optimization Problem 
 
Minimize (or maximize): 

fi(x1,x2, …,xn),  i=1,2…p 

 
such that: 
 hj(x1,x2, …,xn) < 0, j=1,2,…q 
where: 
 
(x1,x2, …,xn)  are the n design variables 
fi(x1,x2, …,xn) are the p objective functions 
hj(x1,x2, …,xn)  are the q inequality constraints 
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The concept of domination is easily defined: design 
A dominates design B if it is better in at least one 
objective and not worse in all other objectives. The 
process of sorting designs based on dominance is 
called non-dominated sorting (NDS). At any stage in 
an optimization run, a population or archive of 
“current” designs is maintained. At each step, all 
feasible designs that are not dominated by any other 
designs in the population (or archive) are given the 
rank of 1. These are the only non-dominated designs 
in the population. Then these designs are 
conceptually removed from the archive, and the 
remaining designs are judged for domination. Those 
that are not dominated by any other of the 
remaining designs are given the rank of 2. The 
procedure is repeated, reranking the remaining 
designs after removing non-dominated designs, to 
establish ranks 3, 4, etc. This constitutes the NDS 
process and is illustrated in Figure 1. The points 
denoted by triangles are the first non-dominated set 
identified, so they are rank 1. After their removal, 

the non-dominated set consists of the points 
denoted by squares, so they are rank 2, etc. 

While the terminology is not completely standard, 
here a non-dominated set consists of feasible 
designs that are not dominated by any other designs  

 

 
in the set under consideration. The set containing 
designs that are not dominated by any feasible 
solution in the entire search space is called the 
Pareto set, and the plot of the corresponding values 
of the objectives is called the Pareto front.  

Sometimes a plot reveals what appears to be the 
Pareto front until additional (dominating) solutions 
are found, in which case these fronts are sometimes 
called local Pareto fronts. The phrase true Pareto 
front is then used to denote the points that 
represent the global Pareto front in the entire search 
space, not the local front among the points searched 
to date. As the run progresses, new designs will 
dominate and replace other designs on a series of 
local Pareto fronts. The end result will typically be a 
set of designs that are not dominated by any other 
designs, and which approach, or converge towards, 
the true Pareto front. From this set of designs, one 
can select the design that best fits the current needs 
(contains the best combination of objectives) or 
those that inspire further exploration. 

Figure 1. Example results of a Pareto optimization study, in which the tradeoff between the two objectives f1 and 
f2 is explored. None of the rank 1 designs is dominated by any other feasible design. That is, for each rank 1 design 
no other design is better in one objective and not worse in the other objective(s). The rank 1 designs (red 
triangles) are a nondominated set, and after they are subtracted from the set of feasible designs, the rank 2 
designs (green squares) are those that are not dominated by any of the remaining points. Design sets of rank 3 
and higher are determined in a similar manner. The “true Pareto front” is indicated by the solid blue line that lies 
below and to the left of the rank 1 designs. The set of rank 1 designs denoted by triangles is an example of a “local 
Pareto front.” 
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1.2 Efficiency and Robustness in Multi-Objective 
Optimization 

Optimization algorithms use the results from 
numerical analyses and simulations, herein called 
“evaluations,” to guide the search for an optimal 
design. For example, a finite element analysis of a 
particular design candidate would be called an 
evaluation. In conventional parameter optimization, 
an algorithm’s efficiency is measured in terms of the 
total number of evaluations required to find the 
optimal design or a design of a specified 
performance level. In Pareto optimization, efficiency 
is similarly judged by the number of evaluations 
needed to find a suitably accurate approximation of 
the Pareto front. In this paper, as in common usage, 
we will refer to reaching the Pareto front when the 
solutions, plotted as in Figure 1, appear to lie on the 
solid line plotted to represent the Pareto front 
(though in practice the true Pareto front is not 
known a priori). 

Using fewer evaluations to find the Pareto front is 
very important because often each evaluation can 
require a significant amount of CPU time. For 
example, a nonlinear finite element simulation may 
require from several hours to several days of CPU 
time. So reducing the total number of evaluations 
needed has a large impact on the time required to 
find an optimized design or Pareto front. The effect 
of algorithm efficiency may be even larger in a 
Pareto optimization study, which often requires 
significantly more evaluations than conventional 
optimization. 

The search path taken by an optimization algorithm 
will generally be different in each run, depending on 
its starting conditions. This means that the number 
of evaluations required to achieve a given level of 
design performance can be quite different from run 
to run. More importantly, the final results of several 
runs using the same algorithm may not be the same 
– that is, each run may fall short in some way from 
finding the Pareto front. These differences depend 
upon the starting conditions of the search, including 
the initial set (or population) of designs. When 
comparing the performance of optimization 
methods in a benchmark study such as this one, it is 
necessary to perform multiple runs of each 
algorithm on each problem to more accurately 
assess the mean and variation of the performance. 

 

1.3 Objectives of the Current Study 

In this study, the efficiency and robustness of several 
multi-objective Pareto optimization algorithms were 
investigated on a set of standard benchmark 
problems. The algorithms under consideration were: 
NSGA II [1-3], NCGA [4], and MO-SHERPA [5].  

2. Overview of Multi-Objective Optimization 
Algorithms 

A brief description of the methods considered in this 
study is presented in this section. A detailed 
mathematical formulation of the methods is left to 
the references cited. 

2.1 NSGA-II 

NSGA-II [1-3] is a multi-objective genetic algorithm 
that uses the non-dominated sorting (NDS) scheme 
and a crowding measure to rank individual designs. 
The crowding measure is a secondary measure used 
to favor an even distribution of points along the 
Pareto front. A design with a lower-numbered rank 
is considered to have a higher performance (or 
fitness) than designs of higher rank. A rank 1 design 
thus has a higher probability of producing offspring 
in the next generation, or cycle. In this paper, 
numerical studies use an implementation of NSGA-II 
with the following default parameter values: 
Crossover Probability = 0.9; Crossover Distribution 
Index = 20.0; and Mutation Distribution Index = 
100.0. 

2.2 NCGA 

The NCGA (Neighborhood Cultivation Genetic 
Algorithm) method [4] is similar in many ways to 
NSGA-II, but it adds the neighborhood crossover 
operator to enhance the degree of exploitation 
(rapid convergence) versus exploration during the 
search. In NCGA, the selection of a pair of individuals 
for crossover is not performed randomly. Instead, 
individuals who are closer (in the objective space) to 
each other have a higher chance of being selected. 
Hence, the children that result from the cross-over 
operation have a higher chance of being close to the 
parents in the objective space.  

In this paper, numerical studies use an 
implementation of NCGA with the following default 
parameter values: Crossover Type = 1; Crossover 
Rate = 1.0; Mutation Rate = 0.01; and Gene Size = 20. 
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2.3 MO-SHERPA 

SHERPA is a proprietary hybrid and adaptive search 
strategy available within the HEEDS software code 
[5].  During a single parametric optimization study, 
SHERPA uses the elements of multiple search 
methods simultaneously (not sequentially) in a 
unique blended manner. This approach attempts to 
take advantage of the best attributes of each 
method. Attributes from a combination of global and 
local search methods are used, and each 
participating approach contains internal tuning 
parameters that are modified automatically during 
the search according to knowledge gained about the 
nature of the design space. This evolving knowledge 
about the design space also determines when and to 
what extent each approach contributes to the 
search. In other words, SHERPA efficiently learns 
about the design space and adapts itself so as to 
effectively search all sorts of design spaces, even 
very complicated ones. 

SHERPA is a direct optimization algorithm in which 
all function evaluations are performed using the 
actual model as opposed to an approximate 
response surface model. 

MO-SHERPA (Multi-Objective SHERPA) is a modified 
version of the algorithm SHERPA for multi-objective 
Pareto search. It works fundamentally like SHERPA, 
but has the advantage of handling multiple 
objectives independently of each other to provide a 
set of solutions, each of which is optimal in some 
sense for one of the objectives. MO-SHERPA uses a 
non-dominated sorting scheme to rank designs, but 
is quite different from NSGA-II and NCGA in other 
aspects. 

2.4 Discretization of Variables 

All three of the methods considered in this study can 
accommodate continuous as well as discrete 
variables. In addition, MO-SHERPA within HEEDS 
allows continuous variables to be discretized by 
specifying a resolution for each design variable. In 
this way, the size of the design space (number of 
possible solutions) can be effectively reduced, which 
in some cases may lead to a more efficient solution 
of the problem. This approach is also an effective 
way to control the resolution of values assigned to 
design variables, since it is not useful in many 
engineering designs to specify a variable to greater 
than a few significant figures. 

However, because the implementation of NCGA and 
NSGA-II utilized does not allow for discretized 
variables, in the current study the resolution of all 
variables within MO-SHERPA was set to 1,000,001 
(i.e., there were 1,000,001 equally distributed values 
of each design variable within the specified range). 
This setting was used to approximate a purely 
continuous variable, and to ensure that MO-SHERPA 
would not benefit unfairly in any way due to the 
resolution of the variables for this benchmark study. 

3. Results of the Benchmark Studies 

For this study, the ZDT family of functions [6] was 
selected, because it is a broad and popular set of 
test functions for benchmarking the performance of 
multi-objective Pareto optimization methods. Each 
of these test functions contains a particular feature 
that is representative of a real world optimization 
problem that could cause difficulty in converging to 
the Pareto front. In the following sections, each of 
these functions is described and the performance of 
the optimization methods on these test problems is 
investigated. 

All of the ZDT functions contain two objectives, 
which is the most common usage of Pareto 
optimization, especially in engineering applications. 
However, none of the optimization methods in this 
study are limited to problems with only two 
objectives. 

For each of the ZDT functions in this study, five runs 
were conducted using each algorithm (with the 
starting designs varying over a wide range of the 
design space). This was done to assess the 
robustness of the results obtained by each 
algorithm, as well as to ensure the results were not 
biased based upon the set of starting designs. 

Each run was performed for three different 
population sizes (sometimes called “archive sizes”): 
12, 40 and 100. In a stochastic search method for 
Pareto optimization, speed and robustness of search 
are often traded off through such a population size 
variable, which affects the number of solutions used 
for generating further solutions at each step. Results 
are presented here for each of the population sizes. 

Except for the population size values, default values 
were used for all other parameters in the NSGA-II 
and NCGA methods. MO-SHERPA is self-adaptive, 
and has no tuning parameters. 
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To simplify the interpretation of results, only the 
non-dominated (rank 1) designs for each run are 
included in the plots. The rank 1 designs are 
determined in the same way for all methods and all 
runs by using the non-dominated sorting (NDS) 
routine of Deb [1-3]. This method was described 
briefly in Section 1.1. The data points are plotted 
one run at a time for each algorithm, then the next 
run of each algorithm, etc. The order of plotting 
among algorithms was changed systematically from 
graph to graph, for clarity and fairness. 

Because the result of a two-objective Pareto 
optimization study is a set of points on a curve (the 
Pareto front), there is no easy or universally 
accepted way to compare the performance of multi-
objective algorithms. In the current study, the results 
of all five runs for each method are included on each 
plot. In this way, it is possible to see the variation of 
the results among the different runs of each 
algorithm, and in some cases it is possible to discern 
the results from separate runs as local Pareto fronts. 
Hence, a subjective or visual comparison among the 
different algorithms is performed based on the 
“cloud” of rank 1 designs for all five runs at various 
stages of the search. 

The performance of each algorithm is judged 
primarily by the placement of its data points relative 
to the optimal Pareto front, which is also presented 
in the plots. The closer the algorithm is to the 
optimal front, the better performing the algorithm. 
The robustness of an algorithm in the vicinity of the 
Pareto front can also be measured using the breadth 
of the “band” formed from its five runs. The 
narrower the band of a specific algorithm, the more 
robust it is in finding a particular front, and the less 
dependent upon the starting design given and the 
stochastic variation induced by the random number 
sequence. 

Finding all points on the true Pareto front is a task 
that cannot be accomplished by any algorithm that 
produces sampled points, as a Pareto front is 
typically composed of one or multiple piecewise 
continuous function(s). We shall use the phrase 
“found the Pareto front” to mean that when viewed 
on a plot displaying the entire front, the points 
plotted are at least nearly all apparently in the 

vicinity of the Pareto front and distributed along it. 
“Did not find the Pareto front” will be used when the 
points found are visually widely separated from the 
optimal front, and it is apparent that they are not on 
the front. 

3.1 ZDT1 Function 

The ZDT1 function has a convex Pareto-optimal 
front. The objective functions are: 

  

 

Where g(x) is defined as: 

) 

In this ZDT1 function, thirty design variables xi were 
chosen (n=30). Each design variable ranged in value 
from 0 to 1. The Pareto-optimal front appears when 
g = 1.0. 

For each run, up to 10,000 evaluations were 
performed. Results for this problem are presented in 
Figures 2 through 4 at four stages of the search 
process – after 500, 1000, 5000, and 10,000 
evaluations. For the function ZDT1, at all population 
(archive) sizes, MO-SHERPA dramatically 
outperformed the NCGA and NSGA-II algorithms. At 
a population size of 12, NCGA generally 
outperformed NSGA-II at 5,000 evaluations and 
beyond, although NSGA-II outperformed NCGA in 
shorter runs. At larger population sizes, NSGA-II 
outperformed NCGA in all runs, but never 
approached the performance of MO-SHERPA. 
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Figure 2 (a) – (d). Superimposed results of 5 runs each of MO-SHERPA, NCGA, and NSGA-II, on benchmark ZDT1 
with population size 12. In (a), MO-SHERPA approaches the true Pareto front within 500 evaluations, while both 
other algorithms are far away. After 1,000 evaluations (b), MO-SHERPA is nearly converged to the Pareto front, 
while neither of the other algorithms is near the front. After 5,000 evaluations (c), all MO-SHERPA runs are 
essentially on the front, while only one of the five NSGA-II runs is near the front. Most NCGA runs are closer to the 
front than most NSGA-II runs. After 10,000 evaluations (d), NSGA-II is close to the true front for three of the runs, 
and NCGA is approaching the front. 
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Figure 3 (a) – (d). Superimposed results of 5 runs each of MO-SHERPA, NCGA, and NSGA-II, on benchmark 
ZDT1 with population size 40. In (a), MO-SHERPA approaches the true Pareto front within 500 evaluations, 
while NCGA is far away and NSGA-II is close behind. After 1,000 evaluations (b), MO-SHERPA is nearly 
converged to the true front, while NCGA is still far away and NSGA-II has not made significant progress 
toward the true front. After 5,000 evaluations (c), all MO-SHERPA runs are essentially on the front, while 
only two of the five NSGA-II runs are on the front. After 10,000 evaluations (d), NSGA-II is close to the true 
front for all of the runs, and NCGA is approaching the front. 
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Figure 4 (a) – (d). Superimposed results of 5 runs each of MO-SHERPA, NCGA, and NSGA-II, on benchmark ZDT1 
with population size 100. In (a), MO-SHERPA approaches the true Pareto front within 500 evaluations for three of 
the runs, while NSGA-II is close behind and NCGA is still far away from the true Pareto front. After 1,000 evaluations 
(b), MO-SHERPA is near the true front for all runs, NSGA-II is approaching the true front in some runs, while NCGA 
is still far away. After 5,000 evaluations (c), all MO-SHERPA runs are essentially on the front, as are four of the five 
NSGA-II runs. After 10,000 evaluations (d), NSGA-II is essentially on the front for four of the five runs, and NCGA is 
approaching the front. 
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3.2 ZDT2 Function 

The ZDT2 function has a non-convex Pareto-optimal 
front. The objective functions are: 

  

 

where g(x) is defined as: 

) 

 
In this ZDT2 function, thirty design variables xi were 
chosen (n=30).  Each design variable ranged in value 
from 0 to 1. The Pareto-optimal front appears when 
g = 1.0. 

For each run, up to 10,000 evaluations were 
performed. Results for this problem are presented in 
Figures 5 through 7 at four stages of the search 
process – after 500, 1000, 5000, and 10,000 
evaluations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For the ZDT2 function, MO-SHERPA dramatically 
outperformed the two other algorithms at all 
population sizes and run durations. It provided many 
Pareto-optimal or near-Pareto-optimal solution 
points within 500 to 1,000 evaluations, especially at 
smaller population sizes. Between NSGA-II and 

NCGA, there was not a clear winner across all 
population sizes and run lengths, but NSGA-II 
performed better as runs grew longer. Neither of 
these algorithms provided a clear indication of the 
front at 1,000 evaluations, while MO-SHERPA had 
many points at or near it. 
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Figure 6 (a) – (d). Superimposed results of 5 runs each of MO-SHERPA, NCGA, and NSGA-II, on benchmark ZDT2 with 
population size 40. In (a), MO-SHERPA is closing in on the true Pareto front within 500 evaluations, while both other 
algorithms are far away. After 1,000 evaluations (b), MO-SHERPA is nearly converged to the Pareto front, while 
neither of the other algorithms is near the front. After 5,000 evaluations (c), all MO-SHERPA runs are essentially on 
the front, while all NSGA-II runs are near or on the front but not well distributed (and partially obscured by the MO-
SHERPA points plotted later on this graph), and none of the NCGA runs is near the front. After 10,000 evaluations 
(d), NSGA-II is on the true front for all of the runs, obscuring the MO-SHERPA points plotted first, and NCGA is closing 
in on the front. 
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Figure 7 (a) – (d). Superimposed results of 5 runs each of MO-SHERPA, NCGA, and NSGA-II, on benchmark ZDT2 
with population size 100. In (a), MO-SHERPA is closing in on the true Pareto front within 500 evaluations (but 
the front is very sparsely populated), while both other algorithms are far away. After 1,000 evaluations (b), MO-
SHERPA is nearly converged to the Pareto front and much better distributed along it, while neither of the other 
algorithms is near the front. After 5,000 evaluations (c), all MO-SHERPA runs are essentially on the front, while 
all NSGA-II runs are near the front but not well distributed, and none of the NCGA runs is near the front. After 
10,000 evaluations (d), NSGA-II is on the true front for all of the runs, and NCGA is closing in on the front. 
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3.3 ZDT3 Function 

The ZDT3 function adds a discreteness feature to the 
front. Its Pareto-optimal front consists of several 
noncontiguous convex parts. The introduction of a 
sine function in this objective function causes 
discontinuities in the Pareto-optimal front, but not in 
the parameter space. The objective functions are: 

  

  

where g(x) is defined as: 

) 

In this ZDT3 function, thirty design variables xi were 
chosen (n=30). Each design variable ranged in value 
from 0 to 1. The Pareto-optimal front appears when 
g = 1.0. 

For each run, up to 10,000 evaluations were 
performed. Results for this problem are presented in 
Figures 8 through 10 at four stages of the search 
process – after 1000, 2000, 5000 and 10,000 
evaluations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

On the ZDT3 function, with its piecewise continuous 
front, MO-SHERPA dramatically outperformed the 
two algorithms NCGA and NSGA-II. At all population 
sizes, MO-SHERPA had identified and densely 
populated all segments of the front within a few 
thousand evaluations. NCGA did not converge on the 
front completely even in 10,000 evaluations, but it 
did always find all segments of the front (as did MO-
SHERPA). NSGA-II, while generally getting closer to 
the front in fewer evaluations than did NCGA, 
missed some of the segments of the front in some of 
its runs, producing an incorrect shape for the front 
(including points extending vertically beyond the 
limits of the front’s segments, particularly on the 
right-hand side of each graph). Thus, while NCGA 
and NSGA-II search each had some advantages over 
the other, neither approached the performance of 
MO-SHERPA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



A Benchmark Study of Multi-Objective Optimization Methods 

 

Page | 13 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8 (a) – (d). Superimposed results of 5 runs each of MO-SHERPA, NCGA, and NSGA-II, on benchmark ZDT3 
with population size 12. In (a), MO-SHERPA is closing in on the true Pareto front within 1,000 evaluations while the 
other two algorithms are far away. After 2,000 evaluations (b), MO-SHERPA is continuing to close in on the Pareto 
front while NCGA closes in on the front as well. NSGA-II is further from the front. After 5,000 evaluations (c), all MO-
SHERPA runs are essentially on the front, while all NCGA and NSGA-II runs are near the front but not on it. After 
10,000 evaluations (d), NSGA-II is on the true front for all of the runs, and NCGA is on it for all but two runs, which 
are very near the front. However, NSGA-II is still displaying many points that are beyond the vertical extent of the 
true front. That is because in some runs, it failed to find the points on the middle segment of the front, and then 
failed to find the points in the second-from-right segment, as well. 
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Figure 9 (a) – (d). Superimposed results of 5 runs each of MO-SHERPA, NCGA, and NSGA-II, on benchmark ZDT3 
with population size 40. In (a), MO-SHERPA and NSGA-II are closing in on the true Pareto front within 1,000 
evaluations while NCGA is far away. After 2,000 evaluations (b), MO-SHERPA has nearly converged on the Pareto 
front while NCGA and NSGA-II are closing in on the front. After 5,000 evaluations (c), all MO-SHERPA runs are 
essentially on the front, while all NCGA runs are near the front but not on it. Four of the five NSGA-II runs have 
many points near the front, but many NSGA-II points also extend beyond the limits of the segments of the true 
front. After 10,000 evaluations (d), NCGA is very near the front for all runs. NSGA-II has many points on the front, 
but still has many points extending beyond the vertical limits of the rightmost two segments (those points are 
actually dominated. 

 



A Benchmark Study of Multi-Objective Optimization Methods 

 

Page | 15 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 10 (a) – (d). Superimposed results of 5 runs each of MO-SHERPA, NCGA, and NSGA-II, on benchmark ZDT3 
with population size 100. In (a), MO-SHERPA and NSGA-II are closing in on the true Pareto front within 1,000 
evaluations while NCGA is far away. After 2,000 evaluations (b), both MO-SHERPA and NSGA-II have nearly 
converged upon the Pareto front, while NCGA makes some progress. After 5,000 evaluations (c), all MO-SHERPA  
runs are essentially on the front. NSGA-II runs have points on the front, but also many beyond the true extent of the 
front’s segments. After 10,000 evaluations (d),  NCGA still has not converged upon the front for any of its runs. NSGA 
continues to plot points beyond the segments, because in some runs, the points dominating them on the true Pareto 
front (in the segment to the immediate left) have not been found. 
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3.4 ZDT4 Function 

The ZDT4 function has 21 local Pareto-optimal fronts 
and therefore is highly multi-modal. The objective 
functions are: 

  

  

where g(x) is defined as: 

 

In this ZDT4 function, ten design variables xi were 
chosen (n=10). The design variable ranges are from -
5 to 5 for the last nine design variables and 0 to 1 for 
x1. The global Pareto-optimal front appears when g= 
1.0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For each run, up to 25,000 evaluations were 
performed. Results for this problem are presented in 
Figures 11 through 13 at four stages of the search 
process – after 7500, 12500, 20000 and 25000 
evaluations. 

On the ZDT4 problem, which is made difficult by the 
presence of many local Pareto fronts, MOSHERPA 
clearly outperforms both NCGA and NSGA-II. 
Between NCGA and NSGA-II, performance is variable 
– typically, some runs of one are better than some 
runs of the other, but neither ever approaches the 
performance of MO-SHERPA, regardless of 
population size or length of run (through 25,000 
evaluations). 
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Figure 11 (a) – (d). Superimposed results of 5 runs each of MO-SHERPA, NCGA, and NSGA-II, on benchmark ZDT4 
with population size 12. In (a), MO-SHERPA approaches the true Pareto front within 7,500 evaluations for three of 
the runs, while NCGA is further away and NSGA-II sometimes even further. After 10,000 evaluations (b), MO-
SHERPA is close to the true front for one run, but the others are a small distance away. NCGA and NSGA-II are still 
far from the front. After 20,000 evaluations (c), MO-SHERPA is on the front for three of the five runs, while NCGA is 
far from the front. NSGA-II only has one fully formed front, and is far from the true front. After 25,000 evaluations 
(d), NCGA has made very little progress and NSGA-II has made some progress, but still only has two runs where 
fronts appear, and both are still far from the true front. 

 



A Benchmark Study of Multi-Objective Optimization Methods 

 

Page | 18 

 

 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 12 (a) – (d). Superimposed results of 5 runs each of MO-SHERPA, NCGA, and NSGA-II, on benchmark 
ZDT4 with population size 40. In (a), MO-SHERPA is approaching the front, but has not yet reached it, after 
7,500 evaluations. NSGA-II and NCGA trail behind, with some runs very far from the true front. After 12,500 
evaluations (b), all algorithms make progress toward the true front, with NCGA making the smallest 
amount of progress. After 20,000 evaluations (c), MO-SHERPA is very close to the front for three of the runs, 
with both the other algorithms still lagging behind. After 25,000 evaluations (d), MO-SHERPA is converged 
on the true front for three of the five runs. The closest competitor is NCGA, whose best run is very close to 
the worst for MO-SHERPA. 
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Figure 13 (a) – (d). Superimposed results of 5 runs each of MO-SHERPA, NCGA, and NSGA-II, on benchmark 
ZDT4 with population size 100. In (a), none of the algorithms are on the front, though MO-SHERPA is leading 
the pack. Several runs for NSGA-II have only a few points, all close to zero for f1(x). After 12,500 evaluations 
(b), MO-SHERPA is approaching close to the true front with one run, and is competitive with the others. NSGA-
II does not have good fronts developed at this point. After 20,000 evaluations (c), MO-SHERPA is converged on 
the true front for one run, and the others are not far away, relative to all of the NCGA and NSGA-II runs. NCGA 
has one run that is better than the worst from MO-SHERPA, and NSGA-II has no points near the front. After 
25,000 evaluations (d), all runs are close to the front for MO-SHERPA, while NCGA is only able to get one front 
within the same range as MO-SHERPA. NSGA-II is able to find one point near the front, but the points in all 
other runs are far from the true front. 
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3.5 ZDT6 Function 

The ZDT6 function has a non-uniform search space: 
the Pareto-optimal solutions are non-uniformly 
distributed along the global Pareto front, and also 
the density of the solutions is lowest near the Pareto 
optimal front and highest away from the front. The 
objective functions are defined as: 

 

 

where g(x) is defined as: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this ZDT6 function, ten design variables xi were 
chosen (n=10). The design variable ranges are from 0 
to 1. The global Pareto-optimal front appears when 
g = 1.0. 

For each run, up to 10,000 evaluations were 
performed. Results for this problem are presented in 
Figures 14 through 16 at four stages of the search 
process – after 500, 2000, 5000 and 10,000 
evaluations. 

On the ZDT6 benchmark, MO-SHERPA dramatically 
outperformed the NCGA and NSGA-II algorithms for 
all population sizes and all lengths of run (through 
10,000 evaluations). NSGA-II was the next best on 
this problem, outperforming NCGA to an increasing 
extent as the run progressed. NCGA never reached 
the vicinity of the front in many of its runs, 
regardless of population size, within the 10,000-
evaluation runs. At 5,000 evaluations, MO-SHERPA’s 
results on all runs were still superior to NSGA-II’s 
results on even its best run. 
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Figure 14 (a) – (d), Superimposed results of 5 runs each of MO-SHERPA, NCGA, and NSGA-II, on benchmark ZDT6 with 
population size 12. After 500 evaluations (a), MO-SHERPA points are close to or on the front on two of the five runs, 
while NCGA and NSGA-II points are both very far away from the front on all runs. After 2,000 evaluations (b), MO-
SHERPA is converged on the front for all but one run, while NCGA and NSGA-II are generally still far from the front. 
After 5,000 evaluations (c), MO-SHERPA is converged on the true front. NSGA-II is very close to the front for all its 
runs, and NCGA is still far from the front. After 10,000 evaluations (d), NSGA-II has converged on the true front, while 
NCGA continues to make progress but is not near the true front.  
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Figure 15 (a) – (d), Superimposed results of 5 runs each of MO-SHERPA, NCGA, and NSGA-II, on 
benchmark ZDT6 with population size 40. In (a), after 500 evaluations, MO-SHERPA is on the front for one 
run, and has better points than NCGA and NSGA-II on most of its other runs. After 2,000 evaluations (b), 
MO-SHERPA is converged on the true front for all of its runs. NCGA and NSGA-II are both far from the 
front. After 5,000 evaluations (c), NSGA-II is near the true front, while NCGA is far away. After 10,000 
evaluations, NSGA-II is converged on or near the true front, while NCGA is still far away for most of its 
runs. 
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Figure 16 (a) – (d), Superimposed results of 5 runs each of MO-SHERPA, NCGA, and NSGA-II, on benchmark ZDT6 with 
population size 100. After 500 evaluations (a), MO-SHERPA has found some points on the true front in one run, and 
has found better points than NCGA or NSGA-II have found, in most of its other runs. After 2,000 evaluations (b), MO-
SHERPA is converged on the front for most of its runs, but still has a few points on the left-hand side which will 
eventually be dominated (i.e., are not on the Pareto front). NCGA and NSGA-II are far away from the true front. After 
5,000 evaluations (c), MO-SHERPA is fully converged on the true front for all runs, while NCGA and NSGA-II have still 
not reached the true front. After 10,000 evaluations (d), NSGA-II is approaching the front, but has not yet reached it, 
while NCGA remains far from the front in at least three of its five runs. 
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4. Summary and Conclusions 

A benchmark study was conducted that compared 
the performance of three multi-objective 
optimization algorithms on a set of standard test 
problems, called the ZDT functions. All of the 
algorithms studied are direct methods and have 
some common characteristics, but other aspects of 
these methods are significantly different. On each of 
the test problems and for all population sizes 
considered, MOSHERPA dramatically outperformed 
both NSGA-II and NCGA in terms of efficiency and 
robustness. 

The superior behavior of MO-SHERPA is attributed to 
its hybrid and adaptive formulation, which makes it 
effective over a wide range of problems. 
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