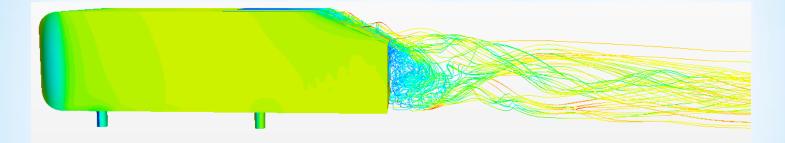
OPTIMIZE THISI2012

Electronic Cooling Optimization

Comparing Search Methods

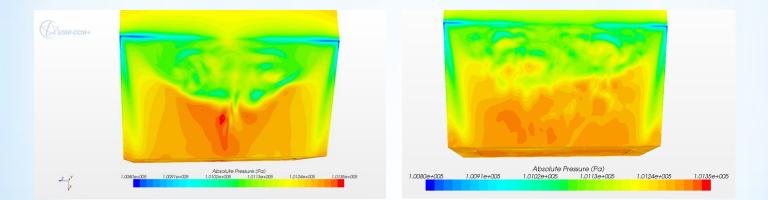
Mike Dombroski Senior Application Engineer CD-adapco October 2012

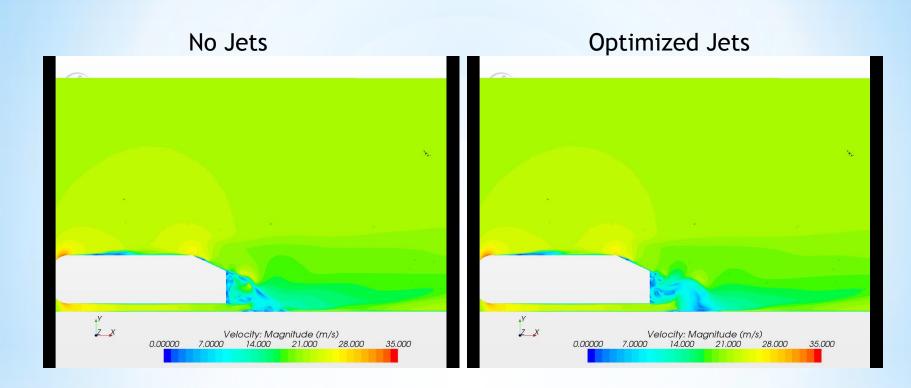

Results – Best Designs

Direct Method (SHERPA)

SHERPA found 4x as many feasible designs and best solution is 10% better than that found with RSM

> Response Surface Method




Utilizing High Velocity Jets for Wake Refinement in Ground Vehicles

Domenic Barsotti MSME Embry-Riddle Aeronautical University

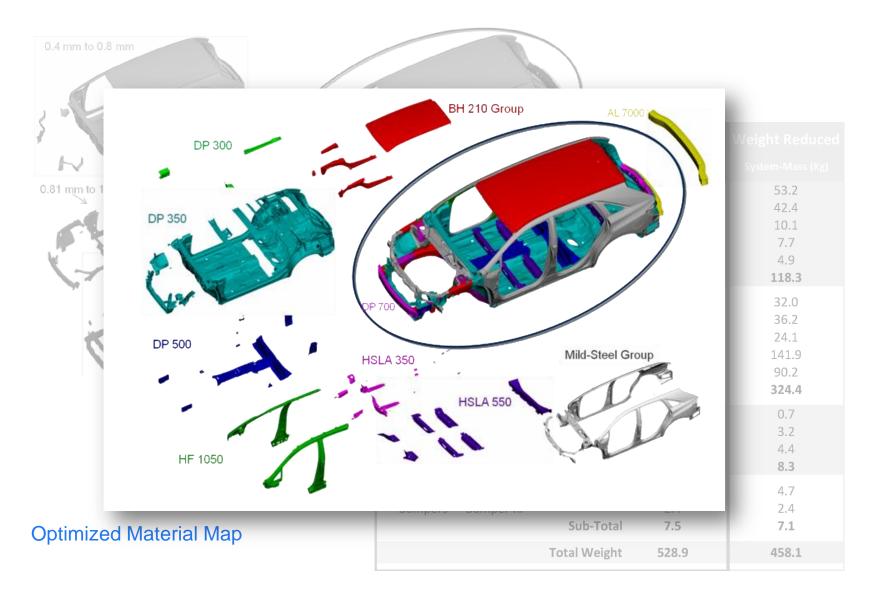
*Averaged Cd = 0.316 (12% reduction) *Jet velocity of 10.28 m/s

Optimized Results

Optimized Results

Light Weight Design Optimization of Vehicle BIW, Strategy and Application

Program Manager, EDAG Inc. October 2012 Javier Rodríguez Director Vehicle Integration, EDAG Inc.


Optimized Model System Weights and Materials

Optimized Model System Weights and Materials (Cont.)

Optimized Model System Weights and Materials

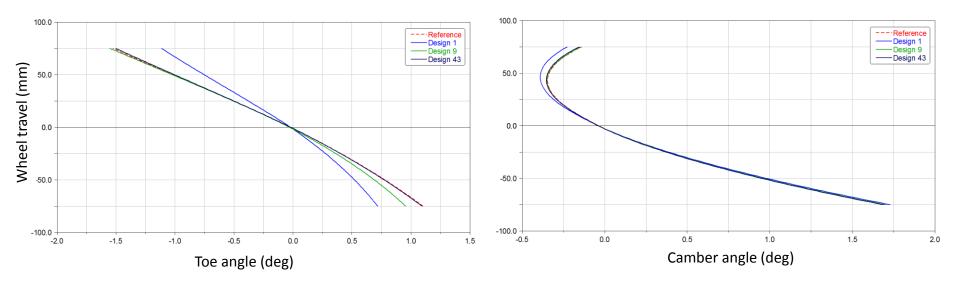
	AL 7000				
			Baseline	Weight Reduced	
	System	Sub-system	System-Mass (Kg)	System-Mass (Kg)	
0.81 mm to 1.20 mm	Closures	Door Frt Door Rr Hood Tailgate Fenders Sub-Total	53.2 42.4 17.8 15 6.8 135.2	53.2 42.4 10.1 7.7 4.9 118.3	
	BIW	Underbody Assembly Front Struture Roof Assembly Bodyside Assembly Ladder Assembly Sub-Total	40.2 42.0 31.3 161.9 102.6 378	32.0 36.2 24.1 141.9 90.2 324.4	
HF 1050	BIW Extra	Radiator Vertical Support Compartment Extra Shock Tower Xmbr Plates Sub-Total	0.7 4.4 3.1 8.2	0.7 3.2 4.4 8.3	
Optimized Sub-Systems Weights	Bumpers	Bumper Frt Bumper Rr Sub-Total Total Weight	5.1 2.4 7.5 528.9	4.7 2.4 7.1 458.1	

13.4 % mass savings

CAE Value AB

Using HEEDS to Drive Auto-correlation of Suspension Elastokinematics

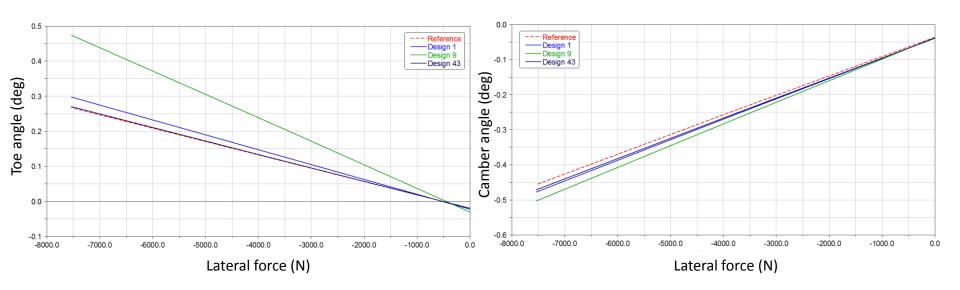
David Fredriksson Johnny Engström Gabriel Palmenäs



Results – Parallel wheel travel

• Toe

• Camber


David Fredriksson dfred@caevalue.com Johnny Engström jengs@caevalue.com Gabriel Palmenäs gpalm@caevalue.com

Results – Cornering force

• Toe

Camber

David Fredriksson dfred@caevalue.com Johnny Engström jengs@caevalue.com Gabriel Palmenäs gpalm@caevalue.com

Results

	Reference	Design 1	Design 43	Diff Design 1	Diff Design 4	Improvement
Toe @ max bump	-1.5271	-1.1156	-1.5035	0.4115	0.023	94.3%
Toe grad @ 0	-0.0191	-0.0222	-0.0197	-0.0031	-0.00(6	80.6%
Toe @ max rebound	1.1026	0.7174	1.0945	-0.3852	-0.008	97.9%
Camber @ max bump	-0.1389	-0.2265	-0.1528	-0.0876	-0.0139	84.1%
Camber grad @ 0	-0.0126	-0.0134	-0.0127	-0.0008	-0.00(1	. 87.5%
Camber @ max rebound	1.6867	1.7295	1.6873	0.0428	0.00	98.6%

David Fredriksson dfred@caevalue.com Johnny Engström jengs@caevalue.com Gabriel Palmenäs gpalm@caevalue.com

Delivering race winning performance with HEEDS[®]MDO and VI-MotorSport

David Ewbank Zouch Dynamics Ltd

Conclusions

- MG KX Momentum Racing has exceeded its ambitions in 2012 and is currently challenging for the drivers championship
- Use of HEEDS[®]MDO and VI-MotorSport have played a key part in this success
- Setup guidance provided to team, based on hundreds of HEEDS[®]MDO and VI-MotorSport simulation evaluations, has proven to be a valuable replacement for past knowledge
- Results from simulation have translated into success on the track without undertaking expensive correlation exercises
- Enabled quick evaluation of development ideas, particularly those requiring unconventional car setup
- Methods used with MG KX Momentum Racing can just as easily be applied by other teams and different race series and be equally effective

Jason Plato on Silverstone 2012

"Despite the retirement in race two this is still one of the best days in my BTCC career. We've made more progress with our MG6 – in fact it's a rocketship – and our tails are well and truly in the air. For MG to go into the final round with a chance of lifting the title in its first year back in the championship is fantastic and I really believe we've got the Honda boys worried."

Jason Plato, Driver at MG KX Momentum Racing.

Development of Multidisciplinary Design Optimization Process for a Large Scale Hybrid Composite Wind Turbine Blade

Jin Woo Lee^{*}, Sathya Gangadharan[§], Maj Mirmirani⁺, Somanath Nagendra[‡]

* Graduate Student, The University of Toledo, Toledo, Ohio

[§] Professor of Mechanical Engineering, Embry-Riddle Aeronautical University, Daytona Beach, Florida
 [†] Dean of College of Engineering, Embry-Riddle Aeronautical University, Daytona Beach, Florida
 [‡] Pratt and Whitney Jet Engines, United technologies Corporation, East Hartford, Connecticut

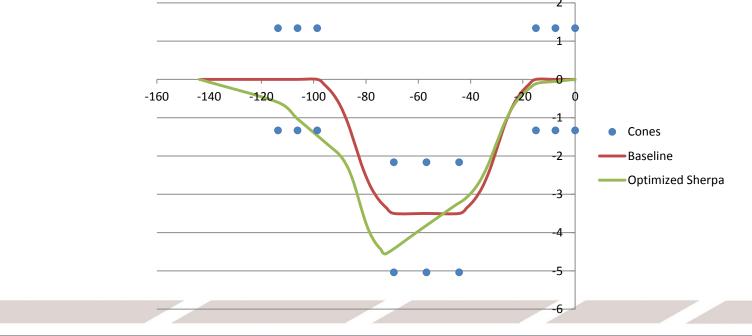
Optimum Design

Responses	Baseline Design	Optimum Design	% difference	
Performance Rate	-0.345138	-0.131959	61.77	
Blade Length (in)	337	5526.8	1540.00	
Weight (lb)	251.434	1446963.488	575384.39	
Annual Energy Production (kWh)	432270	116263408	26796.00	
Power Production Rate (\$/kW)	1335.22	2644.95	98.09	
20 Years Lifetime Profit (\$)	888564.88	221605642.73	24839.73	

Des	ign Variables	Baseline Design				Optimum Design				
S	cale Factor	1				16.4				
	Root Fitting		0.154792				0.755			
	Gran	Glass	s Fiber	Carbo	n Fiber	Glass	Fiber	Carbo	n Fiber	
	Spar (0	0		2.749		3.203		
	Chatien	Тор		Bottom		Тор		Bottom		
	Station	Glass Fiber	Carbon Fiber	Glass Fiber	Carbon Fiber	Glass Fiber	Carbon Fiber	Glass Fiber	Carbon Fiber	
	1	0.375	0	0.375	0	1.571	0	1.528	2.7	
 	2	0	0.0591	0	0.0591	6.388	1.237	6.383	2.336	
Thickness	3	0	0.093575	0	0.093575	3.34	0.96	4.82	0.588	
ne	4	0	0.123125	0	0.123125	5.423	0	1.553	0.328	
ss (5	0	0.10835	0	0.10835	2.649	0.227	0.974	0.13	
(in)	6	0	0.083725	0	0.083725	1.519	0.167	0.916	4.25	
	7	0	0.083725	0	0.083725	1.299	0.054	1.603	0.115	
	8	0	0.064025	0	0.064025	4.925	1.04	1.562	1.449	
	9	0	0.044325	0	0.044325	0.42	0.188	0.122	1.742	
	10	0	0.044325	0	0.044325	1.885	0.5	3.576	1.441	
	11	0	0.034475	0	0.034475	3.262	0.692	0.282	0.39	
	12	0	0.034475	0	0.034475	3.504	0.533	0.915	1.822	
	13	0	0	0	0	4.058	0.168	2.247	0.353	

19

Path Optimization using ADAMS/Car and HEEDS/MDO


Jesper Slattengren Manager, Modeling & Simulation Pratt & Miller Engineering jslat@prattmiller.com

HEEDS User Conference 2012

Design Develop Build Race Win

- Starting from "nominal trajectory"
- QP or Simplex did not converge, solution too far off from baseline
- SHERPA found a solution in 149 evaluations

Design of a Snap-Fit Mechanism Using Finite Element Analysis (FEA) in Combination with SHERPA

Arun Nair, Anita Bestelmeyer, Sandeep Tripathi

BD

Ranny Sidhu (Red Cedar Technology)

International HEEDS User Conference Detroit, October 2012



Conclusions

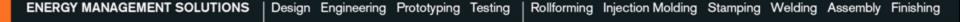
- The final product design has been launched successfully and resulted in significant cost savings, in the order of millions of dollars.
- This design effort was extensively guided by non-linear FEA based optimization using HEEDS and SHERPA.
- Following this effort, several other FEA based design optimization studies have been completed successfully at BD.
- This methodology is very effective, especially when physical prototyping and/or discrete FEA may not be sufficient to yield the desired solution.
- Simulation based optimization offers a novel way to identify innovative product designs and reduce development time and costs.

Optimize This! 2012 Presentation

Using HEEDS with MathCad for Sunglass Bin Door Optimization

HEEDS with MathCad Conclusion

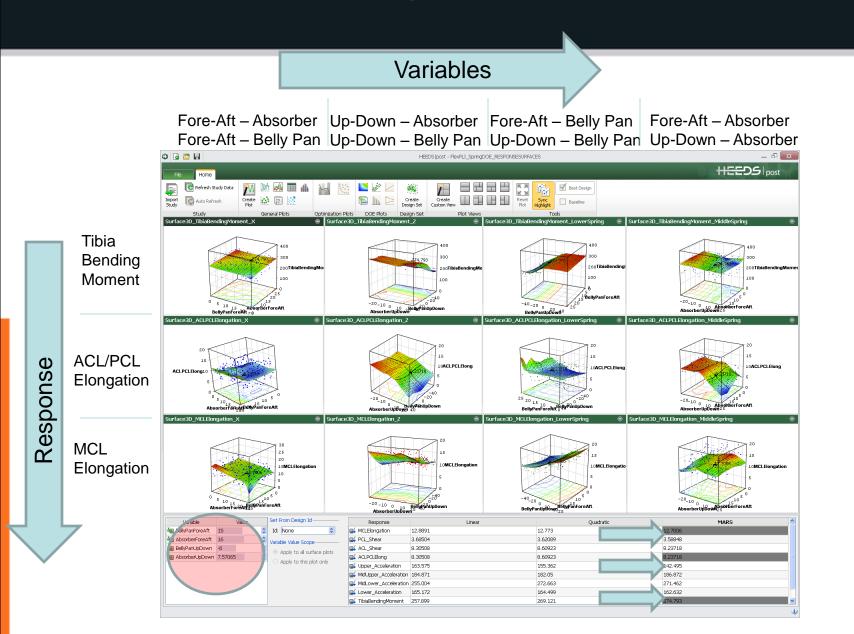
Time Saved


- HEEDS Solution: 24 hrs (8 hrs set-up, 16 hrs run time)
- Manual Solution: ~ 2 weeks

Optimized Solution

- HEEDS (SHERPA) expertly searches design space
- Manual (Engineer) hard to be sure if optimized

• HEEDS, coupled with MathCad, not only automates the engineering design process, saving valuable engineering time, it also quickly finds optimal solutions, saving money.



Understanding the Effect of Vehicle Front End Styling Changes on Flex PLI Injury

Using a Simple Spring Model and HEEDS MDO

HEEDS POST as an Engineering Tool for Balancing Tradeoff between Styling and Safety

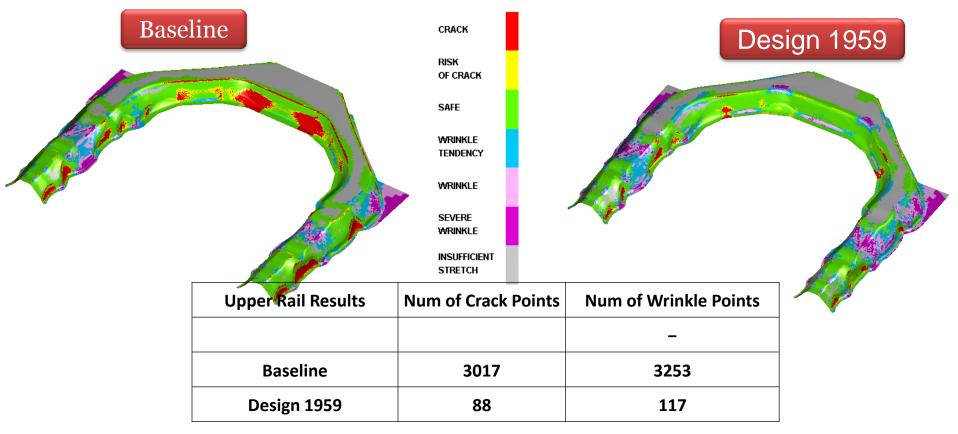
Accelerated Concept
—> to Product Process

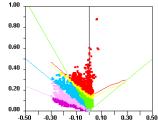
FutureSteelVehicle

Nature's Way to Mobility

Manufacturing Solutions - 3B Optimization

Applied to

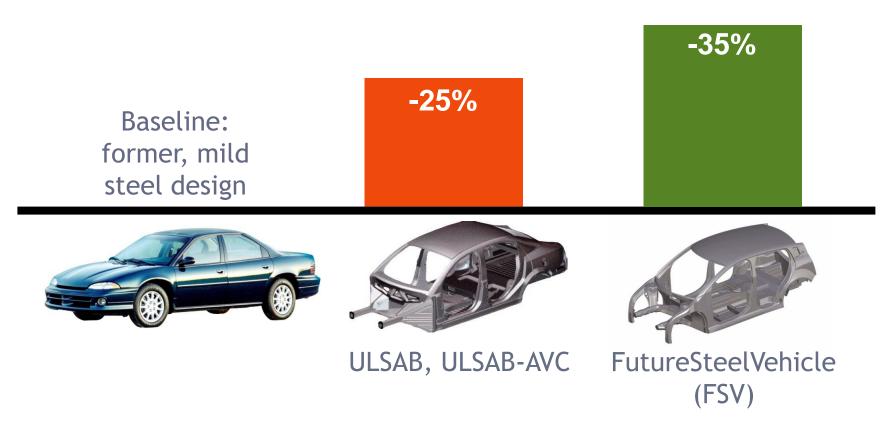

1st HEEDS User Conference October 17th, 2012


Jody Shaw, Director, Marketing & Product Development, U. S. Steel Akbar Farahani, Ph.D , Vice President Engineering , ETA Inc.

Step2- Upper Rail 3B Forming Process Results

Future of Product Design Development Applied to : FutureSteelVehicle

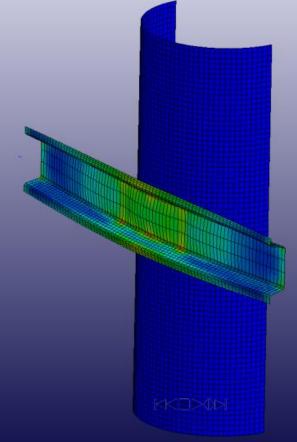
Nature's Way to Mobility



Akbar Farahani, Ph.D , Vice President Engineering , ETA Inc. Jody Shaw, Director, Marketing & Product Development, U. S. Steel

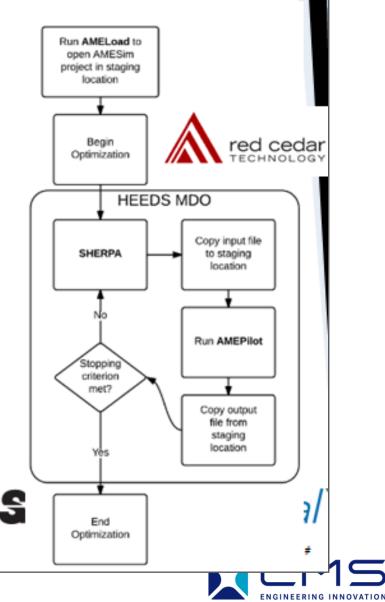
Design for Mass Reduction

Raising the Bar in Vehicle Mass Reduction


CAE Optimization in the Cloud

rod@totalcae.com

Cloud Case Study Beam Optimization with HEEDS


Multi-attribute thermal balancing on an electric vehicle, focusing on comfort and fuel economy Hari Vijay, LMS

Optimization for thermal comfort using HEEDS

- Cold air from the HVAC system is used for cabin cooling and battery cooling
 Tuning of the bypass orifice is important for passenger comfort and thermal battery efficiency
- HEEDS is used for optimizing the bypass valve

12

