
 
 

BMK-3022 
Rev. 01.10 

 
 

A Benchmark Study of Optimization Search Algorithms 
 

Page | 1 
 

N. Chase, M. Rademacher, E. Goodman 
Michigan State University, East Lansing, MI 

R. Averill, R. Sidhu 
Red Cedar Technology, East Lansing, MI 

 
Abstract. A thorough study was conducted that benchmarks the efficiency and robustness of several 
optimization algorithms. In particular, the hybrid adaptive method, SHERPA, in HEEDS Professional, was 
compared to several existing methods. These algorithms were tested on a broad set of benchmark 
problems, each of which emphasizes a different set of features commonly found in engineering 
optimization problems. It was concluded that the SHERPA algorithm is significantly more efficient and 
robust for these problems than the other methods in the study.  

 

1. Introduction 

Engineers in all major industries are rapidly adopting 
automated design optimization technology. The 
potential for delivering better designs in less time, 
compared to manual optimization approaches, 
makes automated design optimization very 
attractive from both a technical and a business 
standpoint. However, two primary barriers prevent 
engineers from realizing the true value of 
optimization across broad classes of problems.  

First, choosing the appropriate optimization search 
algorithm for a given problem depends upon the 
type of design space that has been defined. But the 
characteristics of the design space are typically not 
known until it has been explored, which is the 
primary role of the search algorithm. Faced with this 
“chicken and egg” problem, selecting the best 
method to use and then tuning its parameters is a 
time-consuming process, largely based on trial and 
error. Often engineers must solve the same 
optimization problem multiple times in order to 
identify the method or settings that yield the 
optimal solution. This may increase the overall time 
to solution by several factors, which is unacceptable 
under any circumstances but especially when design 
evaluations are computationally expensive.  

Consequently, the availability of an algorithm that 
performs well over a wide range of problems can 
eliminate manual tuning and yield the desired 

solution within a single run, reducing manual effort 
and design cycle time significantly.  

Second, some algorithms are not efficient enough to 
be used for large-scale optimization studies or those 
involving expensive design evaluations. If a single 
evaluation requires several hours to complete, and a 
few hundred evaluations are needed to identify an 
optimized solution, then weeks or even months of 
CPU time may be required. In this case, reducing the 
total number of evaluations needed to find an 
optimized design has a large impact on the solution 
time, and the difference in performance between 
two algorithms can translate into days or even 
weeks of CPU time.  

The objective of this study was to compare several of 
the available algorithms to assess their performance 
relative to these two issues: effectiveness and 
efficiency over a wide range of problems. 

1.1 Design Optimization Problem Statement 

Mathematically speaking, the optimization problem 
of interest here may be stated as: 

Minimize (or maximize):  

f(x1,x2, …,xn) 

such that:  

gi(x1,x2,…,xn) ≤ 0, i=1,2,…,p  
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hj(x1,x2,…,xn) = 0, j=1,2,…,q 

where:  

f(x1,x2,…,xn)  is the objective function  

gi(x1,x2,…,xn)  are the p inequality constraints, 

hj(x1,x2,…,xn)  are the q equality constraints, and  

(x1,x2,…,xn)   are the n design variables  

The functions f, gi, and hj are responses of the 
system, while the design variables (x1,x2,…,xn) are 
the inputs. A particular design candidate k is 
obtained by assigning values to all of the design 
variables (x1,x2,…,xn)k. In general, the responses f, gi, 
and hj are not known analytical functions. Rather, 
the values of these functions can be calculated at a 
finite number of points, or designs, based on the 
strategy embedded in the optimization algorithm. 
The evaluation of these responses for a given design 
may be performed using an analysis model such as a 
finite element model, a CFD model, a multi-body 
dynamics model, or any other predictive model. The 
role of an optimization algorithm is to solve the 
above problem using as few design evaluations as 
possible. 

Graphically speaking, the goal of a design 
optimization study is to search the performance 
design space to find the lowest valley (if minimizing 
f) or the highest peak (if maximizing f) within the 
feasible range (satisfying all the constraints). The 
design space for a given problem (sometimes called 
the design landscape) is characterized by the types 
of responses, and by the number, types and ranges 
of the design variables. For example, a two-variable 
design space may resemble the plot shown in Figure 
1, where a response is plotted against the values of 
the two variables. Here, the goal of a design study 
may be to find the values of the design variables that 
yield the minimum value of the response while also 
meeting certain constraints. This process is made 
difficult by the fact that the nature of the design 
space is not known a priori, and must be inferred by 
sequential sampling of the space.  

1.2 Solution Process 

The solution process for an automated design 
optimization study is illustrated in Figure 2. The 
iteration steps within the dashed box occur 
automatically, without human intervention. 

 

 
 

Figure 1. The design space for an engineering 
design problem may have several or many peaks 
and valleys and may be non-smooth. The design 
space shown here is for two design variables. 

 

Figure 2. Automated design optimization process 
flowchart. 

The analysis model(s) are created prior to execution 
of the optimization study, and the input file(s) 
associated with these models are modified by the 
optimization tool for each new design evaluation 
during the study. Aside from the analysis model(s), 
the key ingredient in this process is the optimization 
algorithm, which controls the type and direction of 
the search at each iteration step. Note that some 
optimization algorithms are very sensitive to the 
initial guesses of design variable values, while other 
methods are relatively insensitive to these values. 
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1.3 Classification of Search Algorithms 

For the purposes of the current discussion, 
optimization algorithms will be classified as follows:  

• Algorithms in which a single method or scheme 
is used are called monolithic algorithms. 
Monolithic algorithms typically use a single 
strategy for finding improved designs, and 
repeat the same actions at each cycle during a 
study. Examples of monolithic algorithms 
include, but are not limited to, gradient-based 
hill-climbing methods, simplex methods, 
simulated annealing, genetic algorithms, and 
response surface methods.  

• In contrast, hybrid algorithms may use multiple 
methods or strategies within a cycle, or they 
may use different methods or strategies during 
each cycle. The goal of a hybrid algorithm is to 
take advantage of the strengths of several 
strategies during a single optimization study. 

In addition to the above definitions, algorithms will 
be categorized as static or adaptive: 

• A static algorithm contains tuning parameters 
that must be set prior to execution of an 
optimization study, and these parameters 
remain fixed throughout a given run. For 
example, in a genetic algorithm, the user must 
specify the population size, the cross-over type 
and rate, the mutation type and rate, the 
selection method, etc. The performance of a 
static algorithm on a given problem may be 
highly sensitive to the definition of its 
parameters. To properly specify these 
parameters, it is important that a user be well-
trained and have sufficient experience in the use 
of such algorithms. In many cases, a trial-and-
error approach must be used to “tune” these 
parameters in order to achieve the desired 
performance from the static optimization 
algorithm.  

• On the other hand, an adaptive algorithm 
automatically adjusts itself during a run based 
on statistics, heuristics, or other feedback from 
the problem solution process. The goal of an 
adaptive algorithm is to improve its 
performance automatically as it learns about 
the design space being searched. By eliminating 
the need for a user to tune the method, an 
adaptive algorithm has a much better chance of 
performing well during the first search process, 
and its performance may even exceed that of a 

manually tuned static algorithm if the 
adaptation process works well. 

1.4 Limitations of Search Algorithms 

All monolithic search methods have at least some 
limitations. For example, some methods work 
effectively only when it is possible to accurately 
compute gradients of the responses with respect to 
the variables. Some methods work only for 
continuous or discrete variables (but not both), or 
for a relatively small number of variables. Some 
methods find only the nearest local optimum as 
opposed to performing a wider search for the global 
optimum. And some methods require a relatively 
large number of design evaluations to be performed 
in order to find an optimal solution. No single 
monolithic method or algorithm works best on all, or 
even a broad class of, problems.  

In order to choose the best monolithic algorithm for 
a given problem, one must first understand the type 
of design space that is being searched. Generally, it 
is difficult, if not impossible, to know the type or 
character of a design space without first exploring it 
rather thoroughly. This is the main challenge of using 
such methods. The proper search algorithm to use 
for a given problem depends upon the type of design 
space that has been defined. But the characteristics 
of the design space are typically not known until it 
has been explored, which is the primary role of the 
search algorithm. This “chicken and egg” problem 
limits the practical application of monolithic search 
algorithms, because the process of selecting the best 
method to use and then tuning its parameters is a 
time-consuming, trial-and-error process, in which 
the problem is often solved multiple times in order 
to identify the method or settings that yield the 
optimal solution. Essentially, until the nature of a 
given problem is well understood, it is not possible 
to select the best monolithic search method for that 
problem. Thus, the effort required to identify which 
search method to use, and how to tune it, can be 
greater than that needed to perform the eventual 
search. 

1.5 Algorithm Efficiency  

Optimization algorithms use the results from 
analysis models, herein called evaluations, to guide 
the search for an optimal design. For example, a 
finite element analysis of a particular design 
candidate would be called an evaluation.  
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Using fewer evaluations to find an optimized design 
is very important because often each evaluation can 
require a significant amount of CPU time. For 
example, a nonlinear finite element simulation may 
require from several hours to several days of CPU 
time. If a few hundred evaluations are needed to 
identify an optimized solution, then weeks or even 
months of CPU time may be required. For this 
reason, reducing the total number of evaluations has 
a large impact on the time required to find an 
optimized design. The difference between two 
algorithms can be days or even weeks of CPU time, 
which has a significant impact on the ability to meet 
deadlines. 

When using automated optimization techniques, 
there are only three ways to reduce the overall time 
required to complete an optimization study: 

1. Perform fewer evaluations 
2. Perform shorter evaluations 
3. Perform multiple evaluations 

simultaneously, in parallel 
 

Because the latter two approaches are generally 
independent of the search method, the focus of the 
current study is to identify those methods that 
require fewer evaluations to find an optimal solution 
across a wide range of problems. Therefore, herein 
an algorithm’s efficiency is measured in terms of the 
total number of evaluations required to find the 
optimal design or a design of a specified 
performance level.  

1.6 Algorithm Robustness 

If multiple optimization runs are performed using 
the same method on a given problem, the search 
path taken by an optimization algorithm will 
generally be different in each run, depending on its 
starting conditions. This means that the number of 
evaluations required to achieve a given level of 
design performance can be quite different from run 
to run. More importantly, the final results of several 
runs using the same algorithm may not be the same 
– that is, each run may fall short in some way from 
finding the optimal solution. These differences 
depend upon the starting conditions of the search, 
including the baseline design or initial set of designs. 
When comparing the performance of optimization 
methods in a benchmark study such as this one, 
multiple runs of each algorithm on each problem 
must be performed to more accurately assess the 
mean and variation of the method’s performance. 

Further, the effectiveness of a search method may 
be very different from problem to problem. Since 
most algorithms are intended for a specific type of 
problem, wide variations in performance are 
commonly found for the same algorithm across 
several different problems.  

Ideally, the performance of an optimization 
algorithm should be similar under all sorts of 
different starting conditions and on all sorts of 
different problems. Such an algorithm is said to be 
robust. This property is important for instilling 
confidence in the results of an algorithm, as well as 
for reducing the number of trial runs and the 
average number of evaluations in each run. 

1.7 Objectives of the Current Study 

In this study, the efficiency and robustness of several 
optimization algorithms were investigated on a set 
of benchmark problems. The algorithms under 
consideration were: SHERPA [1], Adaptive Simulated 
Annealing (ASA) [2], Genetic Algorithm (GA) [3], 
Sequential Quadratic Programming (NLPQL) [4] and 
a response surface method [5]. These widely used 
methods are available within commercial 
optimization software packages, as described below.  

2. Overview of the Optimization Algorithms 

A brief description of the methods considered in this 
study is presented in this section. A detailed 
mathematical formulation of the methods is left to 
the references cited. 

2.1 SHERPA 

SHERPA is a proprietary hybrid and adaptive search 
strategy available within the HEEDS Professional 
software code [1]. During a single parametric 
optimization study, SHERPA uses the elements of 
multiple search methods simultaneously in a unique 
blended manner. This approach attempts to take 
advantage of the best attributes of each method. 
Attributes from a combination of global and local 
search methods are used, and each participating 
approach contains internal tuning parameters that 
are modified automatically during the search 
according to knowledge gained about the nature of 
the design space.  

This evolving knowledge about the design space also 
determines when and to what extent each approach 
contributes to the search. In other words, SHERPA 
efficiently learns about the design space and adapts 
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itself so as to effectively search many kinds of design 
spaces, even very complicated ones. SHERPA is a 
direct optimization algorithm in which all function 
evaluations are performed using the actual model, 
as opposed to using an approximate response 
surface model. SHERPA does not require solution 
gradients to exist. The only parameter that must be 
specified by the user is the number of allowable 
evaluations.  

2.2 Adaptive Simulated Annealing (ASA) 

Adaptive Simulated Annealing (ASA) [2] is capable of 
finding global optima, and it is not dependent on 
solution gradients. In this paper, numerical studies 
use an implementation of the ASA algorithm that 
contains 20 tunable parameters. In the current 
study, the following default parameter values were 
used: 

• Num of Designs Conv Check: 5 
• Convergence Epsilon: 1.0E-8 
• Rel Rate of Param Annealing: 1.0 
• Rel Rate of Cost Annealing: 1.0 
• Rel Rate of Param Quenching: 1.0 
• Rel Rate of Cost Quenching: 1.0 
• Max Num of Failed Designs: 5 
• Init Param Temperature: 1.0 
• Reanneal Parameters: Yes 
• Reanneal Cost Function: Yes 
• Num of Des Before Reanneal: 1000 
• Num of Accept Des Before Reanneal: 100 
• Min Ratio of Accept Des Before Reanneal: 1.0E-6 
• Rel Grad Step for Reanneal: 0.001 
• Penalty Base: 0.0 
• Penalty Multiplier: 1000 
• Penalty Exponent: 2 
• Failed Run Penalty Value: 1.0E30  
• Failed Run Objective Value: 1.0E30 

 
In addition, the parameter Max Num of Generated 
Designs was altered to perform the desired number 
of evaluations. Therefore, 19 of the 20 tunable 
parameters for ASA were left at their default values. 

2.3 Genetic Algorithm (GA)  

GA is a multi-point, evolutionary search method that 
performs global exploration of the design space 
while searching for an optimal solution [3]. It does 
not require the calculation of solution gradients. In 
this paper, numerical studies use an implementation 
of the multi-island GA that contains 16 tunable 
parameters. In the current study, the following 
default parameter values were used:  

• Rate of Crossover: 1.0 
• Rate of Mutation: 0.01 
• Rate of Migration: 0.01 
• Interval of Migration: 5 
• Elite Size: 1 
• Rel Tournament Size: 0.5 
• Penalty Base: 0.0 
• Penalty Multiplier: 1000 
• Penalty Exponent: 2 
• Max Failed Runs: 5 
• Failed Run Penalty Value: 1.0E30  
• Failed Run Objective Value: 1.0E30 
• Default Variable Bound: 1000 

The parameters Sub-Population Size and Number of 
Generations were altered for each run to improve 
the search while assuring that the desired number of 
evaluations was performed. The Number of 
Generations was maintained above 9 for the lower 
evaluation runs and generally was set much higher 
for the larger evaluation runs. Therefore, 13 of the 
16 tunable parameters for GA were left at their 
default values, and another was held constant. 

2.4 Sequential Quadratic Programming (NLPQL)  

NLPQL is a single-point, gradient-based algorithm 
[4]. It is generally an efficient algorithm for solving 
local optimization problems in which the objective 
function and all constraints are smooth. It is often 
not applicable to multi-modal or non-smooth 
problems.  In this paper, numerical studies use an 
implementation of NLPQL that contains 7 tunable 
parameters. In the current study the following 
default parameter values were used:  

• Termination Accuracy: 1.0E-6 
• Min Abs Step Size: 1.0E-4 
• Max Failed Runs: 5 
• Failed Run Penalty Value: 1.0E30  
• Failed Run Objective Value: 1.0E30 

 
In addition, the parameter Rel Step Size was set to 
1.0E-4 (the default value was 1.0E-3) for all NLPQL 
runs in order to allow greater solution resolution. 
Also, the parameter Max Iterations was altered to 
perform the desired number of evaluations. 
Therefore, 5 of the 7 tunable parameters for NLPQL 
were left at their default values, and another held 
constant for all problems. 
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2.5 Response Surface Methods  

In this approach, the design space is sampled at a 
number of locations using a Latin-Hypercube (LHC) 
sampling scheme. Based on the solution at these 
points, an approximate response surface is fit for 
each objective and constraint, and the resulting 
analytical surfaces are searched to find an optimal 
solution [5]. The effectiveness of this method 
depends on having a sufficient number of well-
located sampling points, a response surface that 
accurately represents the actual design space and 
constraints, and an effective method for searching 
the approximate surfaces. In this study, a quadratic 
response surface based on a least-squares fit was 
used. For the problems considered in this study, this 
method was found to be very inaccurate, yielding 
results that were generally much poorer than those 
provided by other methods. For this reason, no 
results from the response surface method are 
presented herein. 

2.6 Discretization of Variables 

Most of the methods considered in this study can 
accommodate continuous as well as discrete 
variables. In addition, SHERPA within HEEDS allows 
continuous variables to be discretized by specifying a 
resolution for each design variable. In this way, the 
size of the design space (number of possible 
solutions) can be effectively reduced, which in some 
cases may lead to a more efficient solution of the 
problem. This approach is also an effective way to 
control the resolution of values assigned to design 
variables, since it is not useful in many engineering 
designs to specify a variable to greater than a few 
significant figures.  

However, because the implementation of some of 
the algorithms does not allow for discretized 
variables, in the current study the resolution of all 
variables within SHERPA was set to 1,000,001 (i.e., 
there were 1,000,001 equally distributed values of 
each design variable within the specified range). This 
setting was used to approximate a purely continuous 
variable, and to ensure that SHERPA would not 
benefit unfairly in any way due to the resolution of 
the variables for this benchmark study.  

3. Benchmark Results 

For this study, five different problems were selected 
for benchmarking the performance of the 
optimization algorithms. Each of these standard test 
functions contains a particular set of features that 

are representative of a real-world optimization 
problem that could cause difficulty in converging to 
the optimal solution. In the following sections, each 
of these functions is described and the performance 
of the optimization methods on these test problems 
is investigated.  

The analysis models used in the current study are 
analytical functions. It is important to note that, in 
general, the only difference between optimizing an 
analytical function and a finite element model (or 
any other type of analysis model) is the amount of 
CPU time required to perform each evaluation. 
Because the analytical functions are very inexpensive 
to evaluate, they are more amenable to studies such 
as this one than expensive analysis models are. 
Moreover, the functions selected for this study have 
the same types of properties as do common 
engineering problems in virtually all fields. 

For each problem in this study, multiple runs were 
conducted using each algorithm (with the starting 
designs varying over a wide range of the design 
space). This was done to assess the robustness of 
the results obtained by each algorithm, as well as to 
ensure that the results were not biased based upon 
a given set of starting designs. The solutions of these 
multiple runs were averaged to provide a sense of 
the typical performance of an algorithm. The 
standard deviation of these solutions is also 
presented here to better understand the robustness 
of an algorithm on a given problem. In order to make 
the results easier to interpret, the average solution 
to each problem is normalized by the known optimal 
solution. Hence, the normalized average solution to 
each problem should converge to the value 1.  
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3.1.Goldstein-Price’s Function 

3.1.1 Function Description 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1.2 Results 

 

 

 

The Goldstein-Price Function has two variables and is slightly multi-modal and continuous. This function is defined as: 

))273648123218(*)32(30(*))361431419(*)1(1( 2
2212

2
11

2
21

2
2212

2
11

2
21 xxxxxxxxxxxxxxxxf +−++−−+++−+−+++=  

 

where 22 ≤≤− ix . This function is plotted in Figure 3. The global minimum has a value f = 3 at the location (x1, x2) = 

(0,-1). Figure 4 is a three-dimensional contour plot showing the global minimum location and the slight multi-modality 
around the global minimum.  

 

Figure 3. Three-dimensional contour plot of the Goldstein-Price Function. 

 

Figure 4. Three-dimensional contour plot of the local region surrounding the global minimum location of the 
Goldstein-Price Function. 
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3.1.2 Results 

This study was performed for five different values of 
the maximum number of evaluations: 100, 200, 500, 
750 and 1000. A series of 50 runs was performed for 
each of the following optimization search methods: 
SHERPA, ASA, GA, and NLPQL. 

As expected, NLPQL did not perform well on this 
multi-modal problem. Gradient-based methods are 
not able to explore more than one local minimum at 
a time, and they tend to get stuck in the nearest 
local minimum. While GA’s are very good at 
exploring multi-modal design spaces, they are often 
very inefficient at performing local search, which 
often slows their convergence rate considerably. 
Hence, the GA also did not perform well on this 
problem, as seen in Figure 5. 

In order to achieve better resolution, the results of 
the remaining two methods – SHERPA and ASA – are 
shown in Figure 6. It is evident that SHERPA 
performed much better than ASA on this problem, 
especially at lower-to-mid numbers of allowable 
evaluations. ASA requires even more evaluations, 
and shows non-monotonic convergence, which is 
not uncommon for methods that are strongly 
stochastic.  

 

 

 

 

 

Figure 6. Normalized average best solution vs. 
maximum allowable evaluations for the 
Goldstein-Price function (SHERPA and ASA only). 
SHERPA outperforms ASA significantly, especially 
at lower-to-mid evaluation numbers.  Note: The 
normalized average best solution is 1.0 for fully 
converged methods.  

 

Figure 7. Standard deviation of the best solution 
vs. maximum allowable evaluations for the 
Goldstein-Price function (SHERPA and ASA only). 
It is evident that SHERPA is fully converged by 
500 evaluations. 

 

 

 

 

 

Figure 5. Normalized average best solution vs. maximum 
allowable evaluations for the Goldstein-Price function. 
Note that NLPQL could not be run for more than 100 
evaluations for this problem since it converged 
prematurely each time. Note: The normalized average best 
solution is 1.0 for fully converged methods. 
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3.2. Rosenbrock’s Valley 

3.2.1 Function Description 

Rosenbrock’s Valley is also known as a banana 
function. The global optimum is in a long, narrow, 
valley that curves parabolically along its axis (hence 
the name “banana”). Finding the valley itself is 
simple, but finding the global minimum is difficult 
because the valley is non-linear, indicating a strong 
coupling among the variables. Many algorithms 
converge slowly because they must change their 
search direction repeatedly. This function is defined 
as: 

2
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1

22
1 )1()(100 i

n

i
ii xxxf −+−∗= ∑

−

=
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Figures 8 and 9 illustrate this function for two design 
variables. The global minimum has a value f = 0 at 
the location x1 = x2 = 1.0.  

3.2.2 Results 

For this study, five design variables were chosen (x1, 
x2, x3, x4, x5). The global optimum value was known 
to be f = 0.0, with the corresponding design variable 
values (1.0, 1.0, 1.0, 1.0, 1.0).  The study was 
performed for nine different values of the maximum 
number of evaluations: 500, 750, 1000, 1500, 2000, 
5000, 10000, 15000, and 20000. A series of 10 runs 
was performed for each of the following 
optimization search methods:  SHERPA, ASA, GA, and 
NLPQL.  

For Rosenbrock’s Valley, SHERPA is the only method 
to find the optimal solutions for all runs within 
20,000 evaluations. At 500 evaluations and beyond, 
SHERPA performs significantly better than the other 
algorithms, achieving convergence of all runs within 
approximately 1,500 evaluations.  

ASA and GA converge very slowly and non-
monotonically for Rosenbrock’s Valley, and they are 
not near convergence after 20,000 evaluations. 
NLPQL performs relatively well early in the search, 
outperforming all other methods except SHERPA at 
500 evaluations. However, it is unable to make 
additional progress beyond this point, perhaps 
struggling to traverse the valley.   

 

 

Figure 8. Three-dimensional plot of Rosenbrock’s 
Valley for two design variables. Note: Five 
variables were used in the current study. 

 

Figure 9. Three-dimensional plot of Rosenbrock’s 
Valley for two design variables. Note: Five 
variables were used in the current study. 

Overall, SHERPA is clearly the best-performing 
method for this problem. ASA and GA lag SHERPA 
considerably. 

For comparison, SHERPA’s average performance at 
500 evaluations is better than the average 
performance of all other methods at 20,000 
evaluations, yielding speedup by a factor of greater 
than 40. 
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Figure 10. Normalized average best solution vs. 
maximum allowable evaluations for Rosenbrock’s Valley 
with 5 variables. SHERPA outperforms all methods 
significantly, and is nearly converged by 1,500 
evaluations, while other methods have not converged 
within 20,000 evaluations. NLPQL cannot make 
additional progress beyond about 500 evaluations.  Note: 
The normalized average best solution is 1.0 for fully 
converged methods. Also note: the y-axis for this problem 
has been scaled to 10.0 as the maximum value. This cuts 
off the GA normalized average best solution at 500 
evaluations (15.11). 

 

Figure 11. Standard deviation of the best solution vs. 
maximum allowable evaluations for Rosenbrock’s 
Valley with 5 variables. Note that due to the ease of 
finding the valley region, the standard deviation for 
most methods is very low. Also note: the y-axis for 
this problem has been scaled to 8.0 as the maximum 
value. This cuts off the GA standard deviation at 500 
evaluations (17.78). 

 

3.3 Cantilevered Beam Problem with Continuous 
Variables 

3.3.1. Problem Description 

Consider a cantilevered I-beam subjected to a tip 
load, as shown in Figure 12. The goal is to design the 
cross-sectional shape of the I-beam such that a 
minimum volume solution is found that also satisfies 
constraints on the stress and deflection. The 
objective function to be minimized is: 

f(H,h1,b1,b2) = V = [2*h1*b1 + (H – 2*h1)*b2]*L 
     

The constraint functions are defined as: 

g1(H,h1,b1,b2) = P*L*H/(2*I) =  σmax  ≤  σall = 5000 
 

g2(H,h1,b1,b2) = P*L3/(3*E*I) =  δmax  ≤ δall = 0.10 
 

where: 

I = 1/12*b2*(H-2*h1)3 + 2*[1/12*b1*h1
3 + b1*h1*(H-h1) 

2/4] 
 
H, h1, b1, b2

 are the four design variables as 
illustrated in Figure 12, V is the volume of the beam, 
σmax is the maximum bending stress at the root of 
the beam, σall =5000 is the allowable stress, δmax is 
the maximum deflection at the tip of the beam, δall = 
0.10 is the allowable deflection, P=1000 is the 
applied transverse point load, E=10.0E6 is the 
modulus of the material, L=36 is the length of the 
beam, and I is the second area moment of inertia of 
the beam cross section. 

The variables are allowed to vary within the ranges: 

0.21.0
0.120.2

0.11.0
0.70.3

2

1

1

≤≤
≤≤
≤≤
≤≤

b
b
h
H

 

The global minimum has a value f = 92.77 at the 
location H = 7.0, h1 = 0.1, b1 = 9.48482, b2 =0.1.  

 

Figure 12. Cross-sectional shape variables in the 
cantilevered I-beam with a tip load. 



A Benchmark Study of Optimization Search Algorithms 

Page | 11 

 

3.3.2 Results 

In this study, the maximum number of evaluations 
was assigned the values: 50, 75, 100, 150, 200, 250, 
and 500. A series of 25 runs was performed for each 
of the following optimization search methods: 
SHERPA, ASA, GA, and NLPQL.  

SHERPA was the top-performing algorithm on the 
cantilevered beam problem; it was nearly converged 
for all runs by 100 evaluations. NLPQL also 
performed reasonably well on this problem, nearly 
converging for all runs by 500 evaluations. ASA and 
GA converged slowly for this problem, with ASA 
outperforming GA overall. 

3.4 Cantilevered Beam Problem with Mixed 
Variables 

3.4.1. Problem Description 

This problem is identical to the cantilevered beam 
problem described in Section 3.3, with the exception 
that one of the variables, h1, is now discrete. In other 
words, this variable can be assigned only specific 
values from the predefined set {0.1, 0.25, 0.35, 0.5, 
0.65, 0.75, 0.9, 1.0}. 

Engineering problems commonly have some 
continuous and some discrete variables. When this is 
the case, the problem is said to contain mixed 
variables. Gradient-based methods, and some 
response surface methods, are not applicable when 
discrete variables are present. Therefore, NLPQL 
cannot be applied to this problem. 

3.4.2 Results 

SHERPA was the top performing optimization 
method on the cantilevered beam problem with a 
discrete variable. It was nearly converged for all runs 
by 100 evaluations, and significantly outperformed 
all other methods at all numbers of evaluations. ASA 
and GA converged slowly on this problem, with ASA 
outperforming GA overall. As was expected, the 
presence of a discrete variable reduced the 
performance of the optimization methods for this 
problem. SHERPA, however, was much less affected 
by this than other methods were. 

 

 

 

Figure 13. Normalized average best solution vs. 
maximum allowable evaluations for the 
cantilevered beam problem. SHERPA outperforms 
all methods by greater than a factor of 2, nearly 
converging at 100 evaluations. NLPQL nearly 
converges by 500 evaluations. GA and ASA are not 
near convergence within the 500 evaluations 
considered. Note: The normalized average best 
solution is 1.0 for fully converged methods.  

 

Figure 14. Standard deviation of the best solution 
vs. maximum allowable evaluations for the 
cantilevered beam problem. 
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Figure 15. Normalized average best solution vs. 
maximum allowable evaluations for the 
cantilevered beam problem with a discrete 
variable present. SHERPA outperforms all other 
methods. Note: The normalized average best 
solution is 1.0 for fully converged methods. 

 

Figure 16. Standard deviation of the best solution 
vs. maximum allowable evaluations for the 
cantilevered beam problem with a discrete 
variable present. 

3.5. Six Hump Camel Back Function 

3.5.1 Function Description 

The Six Hump Camel Back Function is a 2-D function 
that is multi-modal. It has six local minima, two of 
which are global minima. This function is defined as: 

( ) 2
2

2
221

2
1

4
12

1 44
3

1.24 xxxxx
x

xf ⋅⋅+−+⋅+⋅









+⋅−=   

0.30.3 1 ≤≤− x  

0.20.2 2 ≤≤− x  

Figure 17 illustrates the function for the entire 
design space, while Figure 18 highlights the multi-
modality of the problem around the optima. The two 
global minima have a value f = -1.03164 at the 
locations (x1, x2) = (0.0898, -0.7126), (-0.0898, 
0.7126).   

3.5.2 Results 

The study was performed for eight different values 
of the maximum number of evaluations: 25, 50, 75, 
100, 150, 200, 250, and 500. A series of 25 runs was 
performed for each of the following optimization 
search methods:  SHERPA, ASA, GA, and NLPQL.  
Figure 19 displays the results of this study. 

For the Six Hump Camel Back Function, SHERPA, 
ASA, and NLPQL drastically outperformed GA. While 
GA took nearly 500 evaluations for the convergence 
of all runs to be approached, the other three 
methods approach convergence for all runs by 100 
evaluations. As a result, for the methods SHERPA, 
ASA, and NLPQL, a finer resolution of evaluations 
was also performed between 25 evaluations and 50 
evaluations. This was done to see at what low 
evaluation number each method approached 
convergence for all 25 runs. Figures 20 and 21 
display the results for these runs at lower numbers 
of evaluations.  

SHERPA outperforms ASA, and NLPQL on this 
problem, converging fully at 50 evaluations and 
performing much better at lower evaluations as well. 
ASA converges fully around 100 evaluations. For 
lower evaluations, NLPQL outperforms ASA, being 
closer to full convergence up until 50 evaluations. 
However, NLPQL is never able to find the optimal 
solution for all runs because, depending on the 
starting design, this method sometimes gets trapped 
in one of the local minima. The relatively small size 
of the local minima compared to that of the global 
minima, makes convergence to the local minima 
harder and less frequent than convergence to the 
global minima. This helps explain why NLPQL (a 
gradient based method), seems to do well on this 
multi-modal problem.  
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Figure 20. Normalized average best solution vs. 
maximum allowable evaluations for the six hump camel 
back function at lower numbers of evaluations. SHERPA  
outperforms all other methods, nearly converging by 35 
evaluations and fully converging by 50. Though it does 
not fully converge for all runs, NLPQL performs 
reasonably well on this problem. ASA converges fully, 
but more slowly than SHERPA.  Note: The normalized 
average best solution is 1.0 for fully converged methods.  

 
Figure 21. Standard deviation of the best solution vs. 
maximum allowable evaluations for the six hump camel 
back function. 

 

 

 

 

 

Figure 17. Three-dimensional contour plot of the Six 
Hump Camel Back Function. 

Figure 19. Normalized average best solution vs. maximum 
allowable evaluations for the six-hump camel back function. 
SHERPA, ASA, and NLPQL drastically outperform GA. Note: The 
normalized average best solution is 1.0 for fully converged 
methods. NLPQL cannot perform more than75 evaluations on this 
problem, sometimes converging to local minima. 

Figure 18. Three-dimensional contour plot of the local 
region surrounding the global minima locations of the Six 
Hump Camel Back Function. 
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4. Summary and Conclusions 

A benchmark study was conducted that compared 
the performance of several single-objective 
optimization algorithms on a broad set of test 
problems. The test problems contained features 
common to engineering optimization problems, and 
tested the algorithms’ ability to handle issues such 
as multi-modality, constraints, mixed variables, and 
strongly coupled variables.  

There are two main approaches to assess the 
efficiency of an optimization algorithm. In the first 
approach, the number of evaluations required for 
each algorithm to fully converge to the optimal 
solution is measured. Due to slow convergence of 
some methods, time did not permit each method to 
be run to full convergence during the current study. 
Nevertheless, it was observed that on all of the test 
problems, SHERPA outperformed the other 
algorithms by greater than a factor of two in terms 
of this efficiency measure. In other words, SHERPA 
required less than one-half the number of 
evaluations to converge than did the second best 
algorithm on each problem.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A second measure of efficiency is the quality of the 
solution at a given number of evaluations. This 
measure is important because engineers and 
scientists seldom have the luxury of allowing 
expensive optimization studies to converge 
completely. Therefore, rapid progress toward an 
optimal solution early in a study can be quite 
valuable. In Table 1, the quality of each solution was 
measured at the number of evaluations required by 
SHERPA to fully or very nearly converge. For the five 
test problems, the overall average solution found by 
other methods is less than half as good as those 
found by SHERPA. While even a ten percent 
difference can be substantial in terms of product 
cost, mass or performance, a difference of two or 
three hundred percent is remarkable.  

Compared to SHERPA, the performance of the other 
methods varied greatly from problem to problem. 
The superior behavior of SHERPA is attributed to its 
hybrid and adaptive formulation, which makes it 
robust over a wide range of problems.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Optimization  
Method 

Goldstein-
Price’s Function 

(500 
evaluations) 

Rosenbrock’s 
Valley 
(1500 

evaluations) 

Cantilevered 
Beam Problem 

(150 
evaluations) 

Cantilevered 
Beam with 

Mixed Variables 
(150 

evaluations) 

Six Hump 
Camel Back 

Function 
(50 

evaluations) 
Overall 
Average 

SHERPA 1.00 1.00 1.03 1.03 1.00 1.01 

ASA 6.81 3.84 1.73 1.60 1.13 3.02 

GA 7.49 3.92 2.00 2.00 1.76 3.43 

NLPQL 50.72 1 3.41 2 1.19 NA 3 1.07 14.10 4 

 

1 The NLPQL method was able to perform only 100 evaluations for Goldstein-Price’s Function. Therefore, the normalized 
average best solution reported here is the best that was found within 100 evaluations. 
 
2 The NLPQL method was able to perform only 500 evaluations for Rosenbrock’s Valley. Therefore, the normalized average best 
solution reported here is the best that was found within 500 evaluations. 
 
3 The NLPQL method is not applicable to problems that contain discrete variables. 
 
4 The Overall Average for the NLPQL method was calculated based upon 4 of the 5 problems. 

Table 1. Normalized best solution found within the number of evaluations required by SHERPA to fully or very nearly converge 
to the optimal solution. The number of evaluations at which the data were collected is given in parentheses in the header for 
each column. At the point at which SHERPA converged, the overall average solution found by other methods was less than one-
half as good as that found by SHERPA. 
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