

BMK-3022
Rev. 01.10

A Benchmark Study of Optimization Search Algorithms

Page | 1

N. Chase, M. Rademacher, E. Goodman
Michigan State University, East Lansing, MI

R. Averill, R. Sidhu
Red Cedar Technology, East Lansing, MI

Abstract. A thorough study was conducted that benchmarks the efficiency and robustness of several
optimization algorithms. In particular, the hybrid adaptive method, SHERPA, in HEEDS Professional, was
compared to several existing methods. These algorithms were tested on a broad set of benchmark
problems, each of which emphasizes a different set of features commonly found in engineering
optimization problems. It was concluded that the SHERPA algorithm is significantly more efficient and
robust for these problems than the other methods in the study.

1. Introduction

Engineers in all major industries are rapidly adopting
automated design optimization technology. The
potential for delivering better designs in less time,
compared to manual optimization approaches,
makes automated design optimization very
attractive from both a technical and a business
standpoint. However, two primary barriers prevent
engineers from realizing the true value of
optimization across broad classes of problems.

First, choosing the appropriate optimization search
algorithm for a given problem depends upon the
type of design space that has been defined. But the
characteristics of the design space are typically not
known until it has been explored, which is the
primary role of the search algorithm. Faced with this
“chicken and egg” problem, selecting the best
method to use and then tuning its parameters is a
time-consuming process, largely based on trial and
error. Often engineers must solve the same
optimization problem multiple times in order to
identify the method or settings that yield the
optimal solution. This may increase the overall time
to solution by several factors, which is unacceptable
under any circumstances but especially when design
evaluations are computationally expensive.

Consequently, the availability of an algorithm that
performs well over a wide range of problems can
eliminate manual tuning and yield the desired

solution within a single run, reducing manual effort
and design cycle time significantly.

Second, some algorithms are not efficient enough to
be used for large-scale optimization studies or those
involving expensive design evaluations. If a single
evaluation requires several hours to complete, and a
few hundred evaluations are needed to identify an
optimized solution, then weeks or even months of
CPU time may be required. In this case, reducing the
total number of evaluations needed to find an
optimized design has a large impact on the solution
time, and the difference in performance between
two algorithms can translate into days or even
weeks of CPU time.

The objective of this study was to compare several of
the available algorithms to assess their performance
relative to these two issues: effectiveness and
efficiency over a wide range of problems.

1.1 Design Optimization Problem Statement

Mathematically speaking, the optimization problem
of interest here may be stated as:

Minimize (or maximize):

f(x1,x2, …,xn)

such that:

gi(x1,x2,…,xn) ≤ 0, i=1,2,…,p

A Benchmark Study of Optimization Search Algorithms

Page | 2

hj(x1,x2,…,xn) = 0, j=1,2,…,q

where:

f(x1,x2,…,xn) is the objective function

gi(x1,x2,…,xn) are the p inequality constraints,

hj(x1,x2,…,xn) are the q equality constraints, and

(x1,x2,…,xn) are the n design variables

The functions f, gi, and hj are responses of the
system, while the design variables (x1,x2,…,xn) are
the inputs. A particular design candidate k is
obtained by assigning values to all of the design
variables (x1,x2,…,xn)k. In general, the responses f, gi,
and hj are not known analytical functions. Rather,
the values of these functions can be calculated at a
finite number of points, or designs, based on the
strategy embedded in the optimization algorithm.
The evaluation of these responses for a given design
may be performed using an analysis model such as a
finite element model, a CFD model, a multi-body
dynamics model, or any other predictive model. The
role of an optimization algorithm is to solve the
above problem using as few design evaluations as
possible.

Graphically speaking, the goal of a design
optimization study is to search the performance
design space to find the lowest valley (if minimizing
f) or the highest peak (if maximizing f) within the
feasible range (satisfying all the constraints). The
design space for a given problem (sometimes called
the design landscape) is characterized by the types
of responses, and by the number, types and ranges
of the design variables. For example, a two-variable
design space may resemble the plot shown in Figure
1, where a response is plotted against the values of
the two variables. Here, the goal of a design study
may be to find the values of the design variables that
yield the minimum value of the response while also
meeting certain constraints. This process is made
difficult by the fact that the nature of the design
space is not known a priori, and must be inferred by
sequential sampling of the space.

1.2 Solution Process

The solution process for an automated design
optimization study is illustrated in Figure 2. The
iteration steps within the dashed box occur
automatically, without human intervention.

Figure 1. The design space for an engineering
design problem may have several or many peaks
and valleys and may be non-smooth. The design
space shown here is for two design variables.

Figure 2. Automated design optimization process
flowchart.

The analysis model(s) are created prior to execution
of the optimization study, and the input file(s)
associated with these models are modified by the
optimization tool for each new design evaluation
during the study. Aside from the analysis model(s),
the key ingredient in this process is the optimization
algorithm, which controls the type and direction of
the search at each iteration step. Note that some
optimization algorithms are very sensitive to the
initial guesses of design variable values, while other
methods are relatively insensitive to these values.

A Benchmark Study of Optimization Search Algorithms

Page | 3

1.3 Classification of Search Algorithms

For the purposes of the current discussion,
optimization algorithms will be classified as follows:

• Algorithms in which a single method or scheme
is used are called monolithic algorithms.
Monolithic algorithms typically use a single
strategy for finding improved designs, and
repeat the same actions at each cycle during a
study. Examples of monolithic algorithms
include, but are not limited to, gradient-based
hill-climbing methods, simplex methods,
simulated annealing, genetic algorithms, and
response surface methods.

• In contrast, hybrid algorithms may use multiple
methods or strategies within a cycle, or they
may use different methods or strategies during
each cycle. The goal of a hybrid algorithm is to
take advantage of the strengths of several
strategies during a single optimization study.

In addition to the above definitions, algorithms will
be categorized as static or adaptive:

• A static algorithm contains tuning parameters
that must be set prior to execution of an
optimization study, and these parameters
remain fixed throughout a given run. For
example, in a genetic algorithm, the user must
specify the population size, the cross-over type
and rate, the mutation type and rate, the
selection method, etc. The performance of a
static algorithm on a given problem may be
highly sensitive to the definition of its
parameters. To properly specify these
parameters, it is important that a user be well-
trained and have sufficient experience in the use
of such algorithms. In many cases, a trial-and-
error approach must be used to “tune” these
parameters in order to achieve the desired
performance from the static optimization
algorithm.

• On the other hand, an adaptive algorithm
automatically adjusts itself during a run based
on statistics, heuristics, or other feedback from
the problem solution process. The goal of an
adaptive algorithm is to improve its
performance automatically as it learns about
the design space being searched. By eliminating
the need for a user to tune the method, an
adaptive algorithm has a much better chance of
performing well during the first search process,
and its performance may even exceed that of a

manually tuned static algorithm if the
adaptation process works well.

1.4 Limitations of Search Algorithms

All monolithic search methods have at least some
limitations. For example, some methods work
effectively only when it is possible to accurately
compute gradients of the responses with respect to
the variables. Some methods work only for
continuous or discrete variables (but not both), or
for a relatively small number of variables. Some
methods find only the nearest local optimum as
opposed to performing a wider search for the global
optimum. And some methods require a relatively
large number of design evaluations to be performed
in order to find an optimal solution. No single
monolithic method or algorithm works best on all, or
even a broad class of, problems.

In order to choose the best monolithic algorithm for
a given problem, one must first understand the type
of design space that is being searched. Generally, it
is difficult, if not impossible, to know the type or
character of a design space without first exploring it
rather thoroughly. This is the main challenge of using
such methods. The proper search algorithm to use
for a given problem depends upon the type of design
space that has been defined. But the characteristics
of the design space are typically not known until it
has been explored, which is the primary role of the
search algorithm. This “chicken and egg” problem
limits the practical application of monolithic search
algorithms, because the process of selecting the best
method to use and then tuning its parameters is a
time-consuming, trial-and-error process, in which
the problem is often solved multiple times in order
to identify the method or settings that yield the
optimal solution. Essentially, until the nature of a
given problem is well understood, it is not possible
to select the best monolithic search method for that
problem. Thus, the effort required to identify which
search method to use, and how to tune it, can be
greater than that needed to perform the eventual
search.

1.5 Algorithm Efficiency

Optimization algorithms use the results from
analysis models, herein called evaluations, to guide
the search for an optimal design. For example, a
finite element analysis of a particular design
candidate would be called an evaluation.

A Benchmark Study of Optimization Search Algorithms

Page | 4

Using fewer evaluations to find an optimized design
is very important because often each evaluation can
require a significant amount of CPU time. For
example, a nonlinear finite element simulation may
require from several hours to several days of CPU
time. If a few hundred evaluations are needed to
identify an optimized solution, then weeks or even
months of CPU time may be required. For this
reason, reducing the total number of evaluations has
a large impact on the time required to find an
optimized design. The difference between two
algorithms can be days or even weeks of CPU time,
which has a significant impact on the ability to meet
deadlines.

When using automated optimization techniques,
there are only three ways to reduce the overall time
required to complete an optimization study:

1. Perform fewer evaluations
2. Perform shorter evaluations
3. Perform multiple evaluations

simultaneously, in parallel

Because the latter two approaches are generally
independent of the search method, the focus of the
current study is to identify those methods that
require fewer evaluations to find an optimal solution
across a wide range of problems. Therefore, herein
an algorithm’s efficiency is measured in terms of the
total number of evaluations required to find the
optimal design or a design of a specified
performance level.

1.6 Algorithm Robustness

If multiple optimization runs are performed using
the same method on a given problem, the search
path taken by an optimization algorithm will
generally be different in each run, depending on its
starting conditions. This means that the number of
evaluations required to achieve a given level of
design performance can be quite different from run
to run. More importantly, the final results of several
runs using the same algorithm may not be the same
– that is, each run may fall short in some way from
finding the optimal solution. These differences
depend upon the starting conditions of the search,
including the baseline design or initial set of designs.
When comparing the performance of optimization
methods in a benchmark study such as this one,
multiple runs of each algorithm on each problem
must be performed to more accurately assess the
mean and variation of the method’s performance.

Further, the effectiveness of a search method may
be very different from problem to problem. Since
most algorithms are intended for a specific type of
problem, wide variations in performance are
commonly found for the same algorithm across
several different problems.

Ideally, the performance of an optimization
algorithm should be similar under all sorts of
different starting conditions and on all sorts of
different problems. Such an algorithm is said to be
robust. This property is important for instilling
confidence in the results of an algorithm, as well as
for reducing the number of trial runs and the
average number of evaluations in each run.

1.7 Objectives of the Current Study

In this study, the efficiency and robustness of several
optimization algorithms were investigated on a set
of benchmark problems. The algorithms under
consideration were: SHERPA [1], Adaptive Simulated
Annealing (ASA) [2], Genetic Algorithm (GA) [3],
Sequential Quadratic Programming (NLPQL) [4] and
a response surface method [5]. These widely used
methods are available within commercial
optimization software packages, as described below.

2. Overview of the Optimization Algorithms

A brief description of the methods considered in this
study is presented in this section. A detailed
mathematical formulation of the methods is left to
the references cited.

2.1 SHERPA

SHERPA is a proprietary hybrid and adaptive search
strategy available within the HEEDS Professional
software code [1]. During a single parametric
optimization study, SHERPA uses the elements of
multiple search methods simultaneously in a unique
blended manner. This approach attempts to take
advantage of the best attributes of each method.
Attributes from a combination of global and local
search methods are used, and each participating
approach contains internal tuning parameters that
are modified automatically during the search
according to knowledge gained about the nature of
the design space.

This evolving knowledge about the design space also
determines when and to what extent each approach
contributes to the search. In other words, SHERPA
efficiently learns about the design space and adapts

A Benchmark Study of Optimization Search Algorithms

Page | 5

itself so as to effectively search many kinds of design
spaces, even very complicated ones. SHERPA is a
direct optimization algorithm in which all function
evaluations are performed using the actual model,
as opposed to using an approximate response
surface model. SHERPA does not require solution
gradients to exist. The only parameter that must be
specified by the user is the number of allowable
evaluations.

2.2 Adaptive Simulated Annealing (ASA)

Adaptive Simulated Annealing (ASA) [2] is capable of
finding global optima, and it is not dependent on
solution gradients. In this paper, numerical studies
use an implementation of the ASA algorithm that
contains 20 tunable parameters. In the current
study, the following default parameter values were
used:

• Num of Designs Conv Check: 5
• Convergence Epsilon: 1.0E-8
• Rel Rate of Param Annealing: 1.0
• Rel Rate of Cost Annealing: 1.0
• Rel Rate of Param Quenching: 1.0
• Rel Rate of Cost Quenching: 1.0
• Max Num of Failed Designs: 5
• Init Param Temperature: 1.0
• Reanneal Parameters: Yes
• Reanneal Cost Function: Yes
• Num of Des Before Reanneal: 1000
• Num of Accept Des Before Reanneal: 100
• Min Ratio of Accept Des Before Reanneal: 1.0E-6
• Rel Grad Step for Reanneal: 0.001
• Penalty Base: 0.0
• Penalty Multiplier: 1000
• Penalty Exponent: 2
• Failed Run Penalty Value: 1.0E30
• Failed Run Objective Value: 1.0E30

In addition, the parameter Max Num of Generated
Designs was altered to perform the desired number
of evaluations. Therefore, 19 of the 20 tunable
parameters for ASA were left at their default values.

2.3 Genetic Algorithm (GA)

GA is a multi-point, evolutionary search method that
performs global exploration of the design space
while searching for an optimal solution [3]. It does
not require the calculation of solution gradients. In
this paper, numerical studies use an implementation
of the multi-island GA that contains 16 tunable
parameters. In the current study, the following
default parameter values were used:

• Rate of Crossover: 1.0
• Rate of Mutation: 0.01
• Rate of Migration: 0.01
• Interval of Migration: 5
• Elite Size: 1
• Rel Tournament Size: 0.5
• Penalty Base: 0.0
• Penalty Multiplier: 1000
• Penalty Exponent: 2
• Max Failed Runs: 5
• Failed Run Penalty Value: 1.0E30
• Failed Run Objective Value: 1.0E30
• Default Variable Bound: 1000

The parameters Sub-Population Size and Number of
Generations were altered for each run to improve
the search while assuring that the desired number of
evaluations was performed. The Number of
Generations was maintained above 9 for the lower
evaluation runs and generally was set much higher
for the larger evaluation runs. Therefore, 13 of the
16 tunable parameters for GA were left at their
default values, and another was held constant.

2.4 Sequential Quadratic Programming (NLPQL)

NLPQL is a single-point, gradient-based algorithm
[4]. It is generally an efficient algorithm for solving
local optimization problems in which the objective
function and all constraints are smooth. It is often
not applicable to multi-modal or non-smooth
problems. In this paper, numerical studies use an
implementation of NLPQL that contains 7 tunable
parameters. In the current study the following
default parameter values were used:

• Termination Accuracy: 1.0E-6
• Min Abs Step Size: 1.0E-4
• Max Failed Runs: 5
• Failed Run Penalty Value: 1.0E30
• Failed Run Objective Value: 1.0E30

In addition, the parameter Rel Step Size was set to
1.0E-4 (the default value was 1.0E-3) for all NLPQL
runs in order to allow greater solution resolution.
Also, the parameter Max Iterations was altered to
perform the desired number of evaluations.
Therefore, 5 of the 7 tunable parameters for NLPQL
were left at their default values, and another held
constant for all problems.

A Benchmark Study of Optimization Search Algorithms

Page | 6

2.5 Response Surface Methods

In this approach, the design space is sampled at a
number of locations using a Latin-Hypercube (LHC)
sampling scheme. Based on the solution at these
points, an approximate response surface is fit for
each objective and constraint, and the resulting
analytical surfaces are searched to find an optimal
solution [5]. The effectiveness of this method
depends on having a sufficient number of well-
located sampling points, a response surface that
accurately represents the actual design space and
constraints, and an effective method for searching
the approximate surfaces. In this study, a quadratic
response surface based on a least-squares fit was
used. For the problems considered in this study, this
method was found to be very inaccurate, yielding
results that were generally much poorer than those
provided by other methods. For this reason, no
results from the response surface method are
presented herein.

2.6 Discretization of Variables

Most of the methods considered in this study can
accommodate continuous as well as discrete
variables. In addition, SHERPA within HEEDS allows
continuous variables to be discretized by specifying a
resolution for each design variable. In this way, the
size of the design space (number of possible
solutions) can be effectively reduced, which in some
cases may lead to a more efficient solution of the
problem. This approach is also an effective way to
control the resolution of values assigned to design
variables, since it is not useful in many engineering
designs to specify a variable to greater than a few
significant figures.

However, because the implementation of some of
the algorithms does not allow for discretized
variables, in the current study the resolution of all
variables within SHERPA was set to 1,000,001 (i.e.,
there were 1,000,001 equally distributed values of
each design variable within the specified range). This
setting was used to approximate a purely continuous
variable, and to ensure that SHERPA would not
benefit unfairly in any way due to the resolution of
the variables for this benchmark study.

3. Benchmark Results

For this study, five different problems were selected
for benchmarking the performance of the
optimization algorithms. Each of these standard test
functions contains a particular set of features that

are representative of a real-world optimization
problem that could cause difficulty in converging to
the optimal solution. In the following sections, each
of these functions is described and the performance
of the optimization methods on these test problems
is investigated.

The analysis models used in the current study are
analytical functions. It is important to note that, in
general, the only difference between optimizing an
analytical function and a finite element model (or
any other type of analysis model) is the amount of
CPU time required to perform each evaluation.
Because the analytical functions are very inexpensive
to evaluate, they are more amenable to studies such
as this one than expensive analysis models are.
Moreover, the functions selected for this study have
the same types of properties as do common
engineering problems in virtually all fields.

For each problem in this study, multiple runs were
conducted using each algorithm (with the starting
designs varying over a wide range of the design
space). This was done to assess the robustness of
the results obtained by each algorithm, as well as to
ensure that the results were not biased based upon
a given set of starting designs. The solutions of these
multiple runs were averaged to provide a sense of
the typical performance of an algorithm. The
standard deviation of these solutions is also
presented here to better understand the robustness
of an algorithm on a given problem. In order to make
the results easier to interpret, the average solution
to each problem is normalized by the known optimal
solution. Hence, the normalized average solution to
each problem should converge to the value 1.

A Benchmark Study of Optimization Search Algorithms

Page | 7

3.1.Goldstein-Price’s Function

3.1.1 Function Description

3.1.2 Results

The Goldstein-Price Function has two variables and is slightly multi-modal and continuous. This function is defined as:

))273648123218(*)32(30(*))361431419(*)1(1(2
2212

2
11

2
21

2
2212

2
11

2
21 xxxxxxxxxxxxxxxxf +−++−−+++−+−+++=

where 22 ≤≤− ix . This function is plotted in Figure 3. The global minimum has a value f = 3 at the location (x1, x2) =

(0,-1). Figure 4 is a three-dimensional contour plot showing the global minimum location and the slight multi-modality
around the global minimum.

Figure 3. Three-dimensional contour plot of the Goldstein-Price Function.

Figure 4. Three-dimensional contour plot of the local region surrounding the global minimum location of the
Goldstein-Price Function.

Local minimum

Global minimum

f

f

x2 x1

x2 x1

A Benchmark Study of Optimization Search Algorithms

Page | 8

3.1.2 Results

This study was performed for five different values of
the maximum number of evaluations: 100, 200, 500,
750 and 1000. A series of 50 runs was performed for
each of the following optimization search methods:
SHERPA, ASA, GA, and NLPQL.

As expected, NLPQL did not perform well on this
multi-modal problem. Gradient-based methods are
not able to explore more than one local minimum at
a time, and they tend to get stuck in the nearest
local minimum. While GA’s are very good at
exploring multi-modal design spaces, they are often
very inefficient at performing local search, which
often slows their convergence rate considerably.
Hence, the GA also did not perform well on this
problem, as seen in Figure 5.

In order to achieve better resolution, the results of
the remaining two methods – SHERPA and ASA – are
shown in Figure 6. It is evident that SHERPA
performed much better than ASA on this problem,
especially at lower-to-mid numbers of allowable
evaluations. ASA requires even more evaluations,
and shows non-monotonic convergence, which is
not uncommon for methods that are strongly
stochastic.

Figure 6. Normalized average best solution vs.
maximum allowable evaluations for the
Goldstein-Price function (SHERPA and ASA only).
SHERPA outperforms ASA significantly, especially
at lower-to-mid evaluation numbers. Note: The
normalized average best solution is 1.0 for fully
converged methods.

Figure 7. Standard deviation of the best solution
vs. maximum allowable evaluations for the
Goldstein-Price function (SHERPA and ASA only).
It is evident that SHERPA is fully converged by
500 evaluations.

Figure 5. Normalized average best solution vs. maximum
allowable evaluations for the Goldstein-Price function.
Note that NLPQL could not be run for more than 100
evaluations for this problem since it converged
prematurely each time. Note: The normalized average best
solution is 1.0 for fully converged methods.

A Benchmark Study of Optimization Search Algorithms

Page | 9

3.2. Rosenbrock’s Valley

3.2.1 Function Description

Rosenbrock’s Valley is also known as a banana
function. The global optimum is in a long, narrow,
valley that curves parabolically along its axis (hence
the name “banana”). Finding the valley itself is
simple, but finding the global minimum is difficult
because the valley is non-linear, indicating a strong
coupling among the variables. Many algorithms
converge slowly because they must change their
search direction repeatedly. This function is defined
as:

2
1

1

22
1)1()(100 i

n

i
ii xxxf −+−∗= ∑

−

=
+

 048.2048.2 ≤≤− ix

Figures 8 and 9 illustrate this function for two design
variables. The global minimum has a value f = 0 at
the location x1 = x2 = 1.0.

3.2.2 Results

For this study, five design variables were chosen (x1,
x2, x3, x4, x5). The global optimum value was known
to be f = 0.0, with the corresponding design variable
values (1.0, 1.0, 1.0, 1.0, 1.0). The study was
performed for nine different values of the maximum
number of evaluations: 500, 750, 1000, 1500, 2000,
5000, 10000, 15000, and 20000. A series of 10 runs
was performed for each of the following
optimization search methods: SHERPA, ASA, GA, and
NLPQL.

For Rosenbrock’s Valley, SHERPA is the only method
to find the optimal solutions for all runs within
20,000 evaluations. At 500 evaluations and beyond,
SHERPA performs significantly better than the other
algorithms, achieving convergence of all runs within
approximately 1,500 evaluations.

ASA and GA converge very slowly and non-
monotonically for Rosenbrock’s Valley, and they are
not near convergence after 20,000 evaluations.
NLPQL performs relatively well early in the search,
outperforming all other methods except SHERPA at
500 evaluations. However, it is unable to make
additional progress beyond this point, perhaps
struggling to traverse the valley.

Figure 8. Three-dimensional plot of Rosenbrock’s
Valley for two design variables. Note: Five
variables were used in the current study.

Figure 9. Three-dimensional plot of Rosenbrock’s
Valley for two design variables. Note: Five
variables were used in the current study.

Overall, SHERPA is clearly the best-performing
method for this problem. ASA and GA lag SHERPA
considerably.

For comparison, SHERPA’s average performance at
500 evaluations is better than the average
performance of all other methods at 20,000
evaluations, yielding speedup by a factor of greater
than 40.

x2
x1

f

x1

f

x2

x1

A Benchmark Study of Optimization Search Algorithms

Page | 10

Figure 10. Normalized average best solution vs.
maximum allowable evaluations for Rosenbrock’s Valley
with 5 variables. SHERPA outperforms all methods
significantly, and is nearly converged by 1,500
evaluations, while other methods have not converged
within 20,000 evaluations. NLPQL cannot make
additional progress beyond about 500 evaluations. Note:
The normalized average best solution is 1.0 for fully
converged methods. Also note: the y-axis for this problem
has been scaled to 10.0 as the maximum value. This cuts
off the GA normalized average best solution at 500
evaluations (15.11).

Figure 11. Standard deviation of the best solution vs.
maximum allowable evaluations for Rosenbrock’s
Valley with 5 variables. Note that due to the ease of
finding the valley region, the standard deviation for
most methods is very low. Also note: the y-axis for
this problem has been scaled to 8.0 as the maximum
value. This cuts off the GA standard deviation at 500
evaluations (17.78).

3.3 Cantilevered Beam Problem with Continuous
Variables

3.3.1. Problem Description

Consider a cantilevered I-beam subjected to a tip
load, as shown in Figure 12. The goal is to design the
cross-sectional shape of the I-beam such that a
minimum volume solution is found that also satisfies
constraints on the stress and deflection. The
objective function to be minimized is:

f(H,h1,b1,b2) = V = [2*h1*b1 + (H – 2*h1)*b2]*L

The constraint functions are defined as:

g1(H,h1,b1,b2) = P*L*H/(2*I) = σmax ≤ σall = 5000

g2(H,h1,b1,b2) = P*L3/(3*E*I) = δmax ≤ δall = 0.10

where:

I = 1/12*b2*(H-2*h1)3 + 2*[1/12*b1*h1
3 + b1*h1*(H-h1)

2/4]

H, h1, b1, b2

 are the four design variables as
illustrated in Figure 12, V is the volume of the beam,
σmax is the maximum bending stress at the root of
the beam, σall =5000 is the allowable stress, δmax is
the maximum deflection at the tip of the beam, δall =
0.10 is the allowable deflection, P=1000 is the
applied transverse point load, E=10.0E6 is the
modulus of the material, L=36 is the length of the
beam, and I is the second area moment of inertia of
the beam cross section.

The variables are allowed to vary within the ranges:

0.21.0
0.120.2

0.11.0
0.70.3

2

1

1

≤≤
≤≤
≤≤
≤≤

b
b
h
H

The global minimum has a value f = 92.77 at the
location H = 7.0, h1 = 0.1, b1 = 9.48482, b2 =0.1.

Figure 12. Cross-sectional shape variables in the
cantilevered I-beam with a tip load.

A Benchmark Study of Optimization Search Algorithms

Page | 11

3.3.2 Results

In this study, the maximum number of evaluations
was assigned the values: 50, 75, 100, 150, 200, 250,
and 500. A series of 25 runs was performed for each
of the following optimization search methods:
SHERPA, ASA, GA, and NLPQL.

SHERPA was the top-performing algorithm on the
cantilevered beam problem; it was nearly converged
for all runs by 100 evaluations. NLPQL also
performed reasonably well on this problem, nearly
converging for all runs by 500 evaluations. ASA and
GA converged slowly for this problem, with ASA
outperforming GA overall.

3.4 Cantilevered Beam Problem with Mixed
Variables

3.4.1. Problem Description

This problem is identical to the cantilevered beam
problem described in Section 3.3, with the exception
that one of the variables, h1, is now discrete. In other
words, this variable can be assigned only specific
values from the predefined set {0.1, 0.25, 0.35, 0.5,
0.65, 0.75, 0.9, 1.0}.

Engineering problems commonly have some
continuous and some discrete variables. When this is
the case, the problem is said to contain mixed
variables. Gradient-based methods, and some
response surface methods, are not applicable when
discrete variables are present. Therefore, NLPQL
cannot be applied to this problem.

3.4.2 Results

SHERPA was the top performing optimization
method on the cantilevered beam problem with a
discrete variable. It was nearly converged for all runs
by 100 evaluations, and significantly outperformed
all other methods at all numbers of evaluations. ASA
and GA converged slowly on this problem, with ASA
outperforming GA overall. As was expected, the
presence of a discrete variable reduced the
performance of the optimization methods for this
problem. SHERPA, however, was much less affected
by this than other methods were.

Figure 13. Normalized average best solution vs.
maximum allowable evaluations for the
cantilevered beam problem. SHERPA outperforms
all methods by greater than a factor of 2, nearly
converging at 100 evaluations. NLPQL nearly
converges by 500 evaluations. GA and ASA are not
near convergence within the 500 evaluations
considered. Note: The normalized average best
solution is 1.0 for fully converged methods.

Figure 14. Standard deviation of the best solution
vs. maximum allowable evaluations for the
cantilevered beam problem.

A Benchmark Study of Optimization Search Algorithms

Page | 12

Figure 15. Normalized average best solution vs.
maximum allowable evaluations for the
cantilevered beam problem with a discrete
variable present. SHERPA outperforms all other
methods. Note: The normalized average best
solution is 1.0 for fully converged methods.

Figure 16. Standard deviation of the best solution
vs. maximum allowable evaluations for the
cantilevered beam problem with a discrete
variable present.

3.5. Six Hump Camel Back Function

3.5.1 Function Description

The Six Hump Camel Back Function is a 2-D function
that is multi-modal. It has six local minima, two of
which are global minima. This function is defined as:

() 2
2

2
221

2
1

4
12

1 44
3

1.24 xxxxx
x

xf ⋅⋅+−+⋅+⋅

+⋅−=

0.30.3 1 ≤≤− x

0.20.2 2 ≤≤− x

Figure 17 illustrates the function for the entire
design space, while Figure 18 highlights the multi-
modality of the problem around the optima. The two
global minima have a value f = -1.03164 at the
locations (x1, x2) = (0.0898, -0.7126), (-0.0898,
0.7126).

3.5.2 Results

The study was performed for eight different values
of the maximum number of evaluations: 25, 50, 75,
100, 150, 200, 250, and 500. A series of 25 runs was
performed for each of the following optimization
search methods: SHERPA, ASA, GA, and NLPQL.
Figure 19 displays the results of this study.

For the Six Hump Camel Back Function, SHERPA,
ASA, and NLPQL drastically outperformed GA. While
GA took nearly 500 evaluations for the convergence
of all runs to be approached, the other three
methods approach convergence for all runs by 100
evaluations. As a result, for the methods SHERPA,
ASA, and NLPQL, a finer resolution of evaluations
was also performed between 25 evaluations and 50
evaluations. This was done to see at what low
evaluation number each method approached
convergence for all 25 runs. Figures 20 and 21
display the results for these runs at lower numbers
of evaluations.

SHERPA outperforms ASA, and NLPQL on this
problem, converging fully at 50 evaluations and
performing much better at lower evaluations as well.
ASA converges fully around 100 evaluations. For
lower evaluations, NLPQL outperforms ASA, being
closer to full convergence up until 50 evaluations.
However, NLPQL is never able to find the optimal
solution for all runs because, depending on the
starting design, this method sometimes gets trapped
in one of the local minima. The relatively small size
of the local minima compared to that of the global
minima, makes convergence to the local minima
harder and less frequent than convergence to the
global minima. This helps explain why NLPQL (a
gradient based method), seems to do well on this
multi-modal problem.

A Benchmark Study of Optimization Search Algorithms

Page | 13

Figure 20. Normalized average best solution vs.
maximum allowable evaluations for the six hump camel
back function at lower numbers of evaluations. SHERPA
outperforms all other methods, nearly converging by 35
evaluations and fully converging by 50. Though it does
not fully converge for all runs, NLPQL performs
reasonably well on this problem. ASA converges fully,
but more slowly than SHERPA. Note: The normalized
average best solution is 1.0 for fully converged methods.

Figure 21. Standard deviation of the best solution vs.
maximum allowable evaluations for the six hump camel
back function.

Figure 17. Three-dimensional contour plot of the Six
Hump Camel Back Function.

Figure 19. Normalized average best solution vs. maximum
allowable evaluations for the six-hump camel back function.
SHERPA, ASA, and NLPQL drastically outperform GA. Note: The
normalized average best solution is 1.0 for fully converged
methods. NLPQL cannot perform more than75 evaluations on this
problem, sometimes converging to local minima.

Figure 18. Three-dimensional contour plot of the local
region surrounding the global minima locations of the Six
Hump Camel Back Function.

A Benchmark Study of Optimization Search Algorithms

Page | 14

4. Summary and Conclusions

A benchmark study was conducted that compared
the performance of several single-objective
optimization algorithms on a broad set of test
problems. The test problems contained features
common to engineering optimization problems, and
tested the algorithms’ ability to handle issues such
as multi-modality, constraints, mixed variables, and
strongly coupled variables.

There are two main approaches to assess the
efficiency of an optimization algorithm. In the first
approach, the number of evaluations required for
each algorithm to fully converge to the optimal
solution is measured. Due to slow convergence of
some methods, time did not permit each method to
be run to full convergence during the current study.
Nevertheless, it was observed that on all of the test
problems, SHERPA outperformed the other
algorithms by greater than a factor of two in terms
of this efficiency measure. In other words, SHERPA
required less than one-half the number of
evaluations to converge than did the second best
algorithm on each problem.

A second measure of efficiency is the quality of the
solution at a given number of evaluations. This
measure is important because engineers and
scientists seldom have the luxury of allowing
expensive optimization studies to converge
completely. Therefore, rapid progress toward an
optimal solution early in a study can be quite
valuable. In Table 1, the quality of each solution was
measured at the number of evaluations required by
SHERPA to fully or very nearly converge. For the five
test problems, the overall average solution found by
other methods is less than half as good as those
found by SHERPA. While even a ten percent
difference can be substantial in terms of product
cost, mass or performance, a difference of two or
three hundred percent is remarkable.

Compared to SHERPA, the performance of the other
methods varied greatly from problem to problem.
The superior behavior of SHERPA is attributed to its
hybrid and adaptive formulation, which makes it
robust over a wide range of problems.

Optimization
Method

Goldstein-
Price’s Function

(500
evaluations)

Rosenbrock’s
Valley
(1500

evaluations)

Cantilevered
Beam Problem

(150
evaluations)

Cantilevered
Beam with

Mixed Variables
(150

evaluations)

Six Hump
Camel Back

Function
(50

evaluations)
Overall
Average

SHERPA 1.00 1.00 1.03 1.03 1.00 1.01

ASA 6.81 3.84 1.73 1.60 1.13 3.02

GA 7.49 3.92 2.00 2.00 1.76 3.43

NLPQL 50.72 1 3.41 2 1.19 NA 3 1.07 14.10 4

1 The NLPQL method was able to perform only 100 evaluations for Goldstein-Price’s Function. Therefore, the normalized
average best solution reported here is the best that was found within 100 evaluations.

2 The NLPQL method was able to perform only 500 evaluations for Rosenbrock’s Valley. Therefore, the normalized average best
solution reported here is the best that was found within 500 evaluations.

3 The NLPQL method is not applicable to problems that contain discrete variables.

4 The Overall Average for the NLPQL method was calculated based upon 4 of the 5 problems.

Table 1. Normalized best solution found within the number of evaluations required by SHERPA to fully or very nearly converge
to the optimal solution. The number of evaluations at which the data were collected is given in parentheses in the header for
each column. At the point at which SHERPA converged, the overall average solution found by other methods was less than one-
half as good as that found by SHERPA.

A Benchmark Study of Optimization Search Algorithms

Page | 15

5. References

1. HEEDS Version 5.2 User’s Manual, 2008.

2. Ingber, L.,“Adaptive simulated annealing (ASA): Lessons learned,” Control and Cybernetics,Vol. 25 No. 1,pp. 33-
54, 1996.

3. Goldberg, D.E., Genetic Algorithms in Search, Optimization & Machine Learning, Addison Wesley Longman, Inc.,
1989.

4. Schittkowski, K., “NLPQL: A Fortran subroutine for solving constrained nonlinear programming problems,”
Annals of Operations Research, Vol. 5, pp. 485-500, 1985.

5. Myers, R.H., and Montgomery, D.C., Response Surface Methodology: Process and Product Optimization Using
Designed Experiments, 2nd Edition, Wiley, 2002.

http://www.ingber.com/asa96_lessons.ps.gz�

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 1584.000]
>> setpagedevice

