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Abstract. An approach is presented to optimize a tube hydroforming process using a Genetic Algorithm 
(GA) search method. The goal of the study is to maximize formability by identifying the optimal internal 
hydraulic pressure and feed rate while satisfying the forming limit diagram (FLD). The optimization 
software HEEDS is used in combination with the nonlinear structural finite element code LS-DYNA to 
carry out the investigation. In particular, a sub-region of a circular tube blank is formed into a square die. 
Compared to the best results of a manual optimization procedure, a 55% increase in expansion was 
achieved when using the pressure and feed profiles identified by the automated optimization procedure. 

 
 Introduction 

Aside from the target of cost reduction, industrial 
enterprises are aiming for optimization of their 
products regarding weight as well as stability and 
rigidity. This requires reevaluation of conventional 
design solutions, manufacturing techniques and 
material selections in the search for alternative 
solutions. Such an alternative with interesting 
technical and economical potential is hydroforming, 
a method for manufacturing a wide range of 
complicated hollow components from tubular or 
sheet blank material by means of water pressure. 
This method can decrease development times, 
reduce the number of operation steps, achieve a 
high precision and undisturbed material structure 
and promote uniform strength in the component.  

Tube hydroforming (THF) technology has drawn 
increasing attention in the automotive industry 
because of its enormous advantages over the more 
traditional processes. These advantages include part 
consolidation, weight reduction due to improved 
part design, improved structural strength and 
stiffness and reduction in the associated tooling and 
material costs. The range of parts currently being 
produced or developed using tube hydroforming by 
the automotive industry continues to grow. These 
include engine cradles, radiator supports, roof side 
rails, exhaust instrument support panels [1, 2].  

Finite element method (FEM) simulation of the 
hydroforming process has been proven to be an 

advantageous tool in assisting automotive designs. 
Ni [2] and Wu, et al. [3] simulated engine cradle 
components, and S.D. Liu [4] simulated rectangular 
bulging using LS-DYNA [5]. The processes of circular 
bulging and T-shape formation were simulated by 
Brewster, et al. [6] using Pam-Stamp.  

To reduce defects in THF, the applied internal 
pressure must be high enough to suppress buckling 
but low enough so as not to cause tube bursting. In 
conventional process simulation procedures, a 
pressure profile and feed rate must be supplied as 
an input to the finite element program. Based on the 
results of each finite element simulation, an 
improved pressure profile and feed rate can be 
identified based on intuition and experience. But this 
manual iterative process is very time consuming and 
tedious, and often does not lead to an optimal 
solution within a reasonable time. There is a need, 
therefore, to develop an improved methodology to 
determine the loading paths (i.e., pressure and axial 
feeding versus time) required to hydroform a tubular 
part for a given geometry and material. In this paper, 
HEEDS [7] in combination with LS-DYNA is shown to 
optimize the process parameters to determine the 
best loading paths. 

Problem Description  

A square shaped die and a circular tube blank are 
considered in the present work. Displacement and 
internal pressure curves sought during the 
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optimization are such that the circular tube can 
expand into a square shaped die to a maximum 
extent without bursting, buckling, or wrinkling. 
Considering a point ‘P’ on the tube as shown in Fig. 
1, as the tube expands in the die, the distance ‘U’ 
traveled by the point increases. 

 

Fig.1. One-eighth model of the tube hydroforming 
optimization problem.  

The optimal rates and values of axial feed and 
internal pressure are determined so as to maximize 
the distance ‘U’ while avoiding severe thinning and 
satisfying the forming limit diagram (FLD). The FLD 
provides information about how much a particular 
structure can be deformed before necking occurs. 
Principal strains for each element of the 
hydroformed tube must lie under the major strain 
versus minor strain curve of the forming limit 
diagram to avoid bursting.  

The characteristics of the design space associated 
with the current optimization problem are not 
known a priori. In this case, it is advisable to employ 
a combination of global and local search techniques 
in order to achieve a broad and effective search for 
an optimal solution. For such problems, HEEDS 
utilizes a combination of evolutionary, gradient 
based, and design of experiments search heuristics 
[7]. Since primarily evolutionary search was used in 
the present study, a brief description of this search 
technique is presented in the next section.  

Evolutionary Search  

HEEDS (Hierarchical Evolutionary Engineering Design 
System) is an optimization software package that 
allows designers to automatically and concurrently 
explore hundreds of design parameters and their 
relationships in product and process design 
scenarios, and intelligently seeks optimal values for 
parameters that affect performance and cost. HEEDS 

can be used to improve any engineering system 
(structural, thermal, fluid, electrical, etc.), including 
multi-disciplinary problems. It can be applied to 
parts and processes for any manufacturing process, 
including stamping, casting, hydroforming, and 
more.  

By automating the iterative manual process normally 
used to search for designs that simultaneously meet 
all of the design specifications, engineers can greatly 
decrease the time required to identify a set of 
feasible, or even near-optimal, designs prior to 
building and testing the first prototype. The HEEDS 
advanced design search algorithms and strategies 
effectively and efficiently search over a large number 
of possible design scenarios while performing a 
relatively small number of design evaluations. HEEDS 
software operates in a highly parallel computing 
environment, taking full advantage of powerful and 
inexpensive computers and networks to modify 
virtual structure models while simultaneously 
searching for optimal values of design parameters.  

By intelligently coupling global and local search 
techniques, the HEEDS optimization algorithms are 
able to find excellent solutions to even the most 
challenging design problems. Local optimization 
methods (e.g., nonlinear sequential programming, 
response surface methods, etc.) are valuable for 
fine-tuning a design, but not for exploring different 
design concepts in an effort to identify a much 
better design. Because the mathematical cost or 
objective functions associated with many practical 
design problems are multi-modal (i.e., they have 
many peaks and valleys) or even discontinuous, the 
use of global search methods (e.g., parallel genetic 
algorithms) improves the likelihood of achieving 
significant design innovation. While global methods 
search broadly over a large design space, local 
optimization methods simultaneously focus on 
promising sub-regions of the design space to identify 
the best designs in that region.  

HEEDS applies several optimization methods 
simultaneously, allowing each method to take 
advantage of the best attributes and solutions found 
from other parallel searches. The multiple semi-
independent search processes exchange information 
about the solution space with each other, helping 
them jointly to satisfy multiple constraints and 
objectives. This search method is called a 
heterogeneous multi-agent approach. This approach 
quickly identifies design attributes with good 
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potential and uses them to focus, improve and 
accelerate the search for an optimum solution. 

Genetic algorithm 

HEEDS employs a Genetic Algorithm (GA) to perform 
evolutionary search. GAs are particularly useful 
when the design space is large and complex. The 
main problem with using a simple GA is the 
potentially large number of design evaluations 
required to obtain a set of satisfactory solutions. 
HEEDS reduces the number of evaluations required 
to obtain a set of satisfactory solutions by 
hierarchically decomposing a problem with multiple 
agents that represent the problem in various ways, 
while combining efficient local search methods (e.g., 
response surface methods, nonlinear sequential 
quadratic programming, and simulated annealing). 

A GA is a search procedure that is based on the 
mechanics of natural selection. Specific knowledge is 
embedded in a chromosome (or design vector), 
which represents a possible design with a set of 
values of all the design variables. The number of 
choices per design variable determines the fidelity 
(or resolution) of each design variable. These design 
variables are the building blocks used to construct a 
particular design. The GA creates and destroys 
designs during a process that involves decoding each 
chromosome, evaluating its satisfaction of 
constraints and its performance relative to the 
objectives, then allowing a simulated “natural 
selection” to determine which designs are 
eliminated and which survive to generate other 
derivative designs. Designs that perform well 
(relative to constraints and objectives) have a higher 
probability of surviving to influence future designs 
(their “offspring”). During reproduction, the two 
genetic operators commonly modeled that produce 
new chromosomes (or design vectors) are called 
crossover and mutation. 

Crossover  

The crossover operation (sometimes also called 
“recombination”) forms a new solution by combining 
parts of two existing solutions. A high crossover rate 
(fraction of population replaced by crossover during 
one generation of reproduction) will produce many 
new designs in each generation, but will also have a 
high probability of disrupting (and potentially losing, 
at least temporarily) higher-performance designs 
already found, and requires more evaluations of 

constraints and objectives in each generation, which 
are typically the most costly computing operation in 
the entire problem. 

Mutation 

Mutation is a reproduction operation that produces 
a new solution from a single existing solution, 
through any of several ways. Mutation can change 
the value of one design variable or of many 
simultaneously, and can change them in uniform 
random ways, or by a normal distribution, for 
example around the current values of the design 
variables. Mutation helps maintain diversity and 
reduces the possibility of premature convergence 
(the tendency of a set of solutions to come to closely 
resemble each other, thereby making it difficult for 
crossover to generate solutions that differ very much 
from the current set).  

A set of co-existing designs defines a population, 
while successive populations are termed 
generations. That is, each period during which a set 
of existing solutions are evaluated then used with 
natural selection, crossover, and mutation to 
generate a new set of solutions, is called a 
generation. A large population typically contains 
more genetic diversity (i.e., different values of design 
variables) that typically improves the ultimate results 
of the GA search. However, the more new 
individuals created in each generation, the more 
computer time must be spent evaluating the 
constraints and objectives of the new individuals, so 
there is a tradeoff that must be made. 

Within each agent, a GA search begins by creating a 
single initial population, wherein chromosomes 
(vectors of design variable values) are randomly 
created. At this point the performance (constraint 
satisfaction and objective values of each design is 
evaluated. Biased by the evaluations obtained, the 
GA uses unary (mutation) and binary (crossover) 
operators on these designs to create another 
population. This population probabilistically 
maintains the previously high performing designs 
while discarding poorly performing designs. New 
population members are evaluated, and then 
additional rounds of generation and selection are 
performed. This is repeated until satisfactory 
solution(s) are obtained. Incorporating these 
processes in a computer routine produces an 
algorithm that solves problems in a manner 
reminiscent of natural evolution. Independent GA 
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searches in several agents can share information 
with each other through a user-defined migration 
process. 

Definition of Performance  

The “goodness” of each design is represented with a 
single scalar value called the performance measure 
or the objective function. The performance measure 
is a composite of a number of subsidiary measures, a 
set of objectives (each of which may be targeted for 
maximization or minimization) and a set of 
constraints, for which violations are to be minimized. 
The constraints enter into the performance 
according to the penalty method, which gives them 
no influence so long as they are satisfied, but gives 
them increasing importance to whatever extent 
when they fail to be satisfied. Within any single 
agent, to evaluate the performance measure (or 
fitness) of a design, the objective and constraint 
functions are normalized, weighted, and aggregated 
as follows: 

Where P is the performance measure, Nobjs is the 
number of objectives, and Ncons is the number of 
constraints. R1i is a constant used to linearly reward 
a design’s performance due to extremizing of the ith 

objective function. R2i is a constant used to 
quadratically reward a design’s performance due to 
extremizing of the ith objective function. The ith 

objective function (ƒ0i) is normalized by the absolute 
value of ni. P1i is a constant used to linearly penalize 
a design’s performance for violating the ith constraint 
function. P2i is a constant used to quadratically 
penalize a design’s performance due to the violation 
of the current constraint function. The ith constraint 
function (ƒci) is normalized by the absolute value of 
its target ti. If the constraint is satisfied C is set to 
zero; if the constraint is violated C is set to unity. 

 

Tube Hydroforming Process  

One-eighth part of the tube is considered in the FEM 
model to reduce the simulation time as shown in Fig. 
2. The material model used is the transversely 
anisotropic elastic plastic model, material 37 in LS-
DYNA. Material properties obtained from 
experimental test are shown in Table 1, while Fig. 3 
shows the true stress and plastic strain curve used in 
the simulation. 

 

Fig. 2. One-eighth FEM model of the tube 
hydroforming process. 

Table 1: Material Properties for AA6061-T6.  

Fig. 3. Experimentally obtained stress-strain data. 
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Fig. 4. Internal pressure and axial feed vs. time 
obtained using a manual iterative process. 

Manual Optimization Results  

A large number of manual iterations were 
performed using LS-DYNA to identify the pressure 
and axial feed profiles that yielded the maximum 
expansion of the tube while satisfying the forming 
limit diagram. One of the best pressures and axial 
feed profiles found during this manual procedure is 
illustrated in Fig. 4. 

For the pressure and feed rate shown in Fig. 4, the 
maximum expansion of the tube before failure is 
illustrated in Fig. 5. The tube expands to a predicted 
radius of 14.8 mm before bursting. 

 

Fig. 5. Maximum radius obtained for the 
deformed tube before failure using manual 
optimization. 

Fig 6. Internal pressure and axial feed obtained 
from the optimization program HEEDS.  

Optimization Results 

HEEDS was used to optimize the fluid pressure and 
the axial feed profiles. The objective function was to 
maximize the axial feed in the tube (i.e. to achieve 
maximum expansion within the square die) while 
satisfying the constraint on the forming limit 
diagram (i.e. all strains in the tube fall below the 
failure limit). HEEDS obtained the displacement and 
strain component information as output from LS-
DYNA. Principal strains were calculated and 
compared with the forming limit diagram acquired 
for the tube material AA6061-T6. Figure 6 illustrates 
the best process design values found for the fluid 
pressure and axial feed rate. 

 

 

For the pressure and feed rate shown in Fig. 6, the 
maximum expansion of the tube before failure is 
illustrated in Fig. 7. The tube expands to a predicted 
radius of 9.0 mm before bursting, for an increase in 
displacement of 55% compared to the solution 
found manually. 

 

 

 

 

Fig.7. Maximum radius obtained for the deformed 
tube before failure, as obtained by HEEDS. 
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Experimental Validation 

HEEDS was used to optimize the fluid pressure and 
the axial feed profiles. The objective function was to 
maximize the axial feed in the tube (i.e. to achieve 
maximum expansion within the square die) while 
satisfying the constraint on the forming limit 
diagram (i.e. all strains in the tube fall below the 
failure limit). HEEDS obtained the displacement and 
strain component information as output from LS-
DYNA. Principal strains were calculated and 
compared with the forming limit diagram acquired 
for the tube material AA6061-T6. Figure 6 illustrates 
the best process design values found for the fluid 
pressure and axial feed rate. 

 

Fig. 8. Experimental result of tube hydroforming 
process of AA6061-T6. 

 

Fig. 9. Numerical result of the tube hydroforming 
process. 

Conclusions  

Hydroforming is an emerging technology that 
meshes well with the automotive industry’s drive to 
achieve part reduction and more efficient use of 
material. By using finite element analysis methods in 
conjunction with automated design optimization 

procedures, it has been demonstrated here that 
optimal hydroforming process parameters can be 
determined very efficiently. In the present study, a 
55% increase in expansion of a circular blank in a 
square die was achieved compared to manual 
optimization. 
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